
*' ■>

NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

SIGNAL CLASSIFICATION USING THE
MEAN SEPARATOR NEURAL NETWORK

by

Miguel G. San Pedro

March 2000

Thesis Advisor:
Co-Advisor:

Monique P. Fargues
Ralph D. Hippenstiel

Approved for public release; distribution is unlimited

J*nQWJAimxsagaom>i
20000530 043

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing
data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or
any other aspect of this collection of information, including suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
March 2000

3. REPORT TYPE AND DATES COVERED
Master's Thesis

4. TITLE AND SUBTITLE
Signal Classification Using The Mean Separator Neural Network

6. AUTHOR(S)
San Pedro, Miguel G.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

5. FUNDING NUMBERS

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSORING /MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense
or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13 ABSTRACT (Maximum 200 words)
The explosion of digital technology provides the warrior with the potential to exploit the battlespace in ways previously

unknown. Unfortunately, this godsend is a two-edge sword. Although it promises the military commander greater situational
awareness, the resulting tidal wave of data impairs his decision-making capacity. More data is not needed; enhanced information and
knowledge are essential.

This study built upon the Mean Separator Neural Network (MSNN) signal classification tool originally proposed by Duzenli
(1998) and modified it for increased robustness. MSNN variants were developed and investigated. One modification involved input
data preconditioning prior to neural network processing. A second modification incorporated projection space variance into a re-
defined performance parameter and in a newly defined training termination criterion. These alternative MSNN architectures were
measured against the standard MSNN, a single-layer perceptron, and a statistical classifier using data of varying input dimensionality
and noise power. Classification simulations performed using these techniques measured the accuracy in categorizing data objects
composed of artificial features and features extracted from synthetic communication signals. The projection space modification variant
exceeded all classifiers under noise-free conditions and performed comparably to the standard MSNN in noisy environments. The
preconditioned input method produced a poorer response under most situations.

14. SUBJECT TERMS
Signal Classification, Neural Networks, Mean Separator Neural Network, Single Layer Perceptron,
Statistical (Quadratic) Classifier

17. SECURITY
CLASSIFICATION OF REPORT

Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION OF
ABSTRACT

Unclassified

15. NUMBER OF PAGES
216

16. PRICE CODE

20. LIMITATION OF
ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev.2-891
Prescribed by ANSI Std. 239-18

THIS PAGE INTENTIONALLY LEFT BLANK

Approved for public release; distribution is unlimited

SIGNAL CLASSIFICATION USING THE
MEAN SEPARATOR NEURAL NETWORK

Miguel G. San Pedro
Lieutenant Commander, United States Navy

B.S., University of California, San Diego, 1987

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL

March 2000

Author:

Approved by:

/^J^^e^ usJ
Miguel G. San Pedro

 4r
"tyfoniaja^P. Fargues, Thesis Advisor

Ralph D. Hippenstiel, Co-Advisor
j^-*—^J^-

jy B. Knorr, Chairman
Department of Electrical and Computer Engineering

in

THIS PAGE INTENTIONALLY LEFT BLANK

IV

ABSTRACT

The explosion of digital technology provides the warrior with the potential to

exploit the battlespace in ways previously unknown. Unfortunately, this godsend is a

two-edge sword. Although it promises the military commander greater situational

awareness, the resulting tidal wave of data impairs his decision-making capacity. More

data is not needed; enhanced information and knowledge are essential.

This study built upon the Mean Separator Neural Network (MSNN) signal

classification tool originally proposed by Duzenli (1998) arid modified it for increased

robustness. MSNN variants were developed and investigated. One modification

involved input data preconditioning prior to neural network processing. A second

modification incorporated projection space variance in a re-defined performance

parameter and in a newly defined training termination criterion. These alternative MSNN

architectures were measured against the standard MSNN, a single-layer perceptron, and a

statistical classifier using data of varying input dimensionality and noise power.

Classification simulations performed using these techniques measured the accuracy in

categorizing data objects composed of artificial features and features extracted from

synthetic communication signals. The projection space modification variant exceeded all

classifiers under noise-free conditions and performed comparably to the standard MSNN

in noisy environments. The preconditioned input method produced a poorer response

under most situations.

THIS PAGE INTENTIONALLY LEFT BLANK

VI

TABLE OF CONTENTS

I. INTRODUCTION 1

A. BACKGROUND 1

B. THESIS OBJECTIVES 1

C. THESIS ORGANIZATION2

II. NEURAL NETWORKS 3

A. BIOLOGICAL INSPIRATION 3

B. COMPUTER IMITATION 5

III. CLASSIFICATION 7

A. STATISTICAL CLASSIFIER....'. 9

B. PERCEPTRON 11

1. Principles of Operation 11
2. Training 14
3. Training Termination 15
4. Limitations 16

C. MEAN SEPARATOR 17

1. Principles of Operations 17
2. Processing Element 19
3. Training 21
4. Class Typing and Decision-Making 26
5. Summary 29

D. ALTERNATE MEAN SEPARATOR SCHEMES 30

1. Input Data Preconditioning 32
2. Projection Space Normalization 34
3. Further Implementation of the Variance-Mean Ratio 43

E. SUMMARY 44

IV. VERIFICATION OF CLASSIFIER PERFORMANCE 47

Vll

A. SIMULATION PROTOCOL 47

B. INDIVIDUAL CLASSIFIER PERFORMANCE 49

1. Statistical Classifier 49
2. Perceptron 50
3. MSNN Methods "."""!""""""."!!" 51

C. CLASSIFIER COMPARISON 66

D. SUMMARY 68

V. CLASSIFICATION OF MODULATED SIGNALS 71

A. FEATURE EXTRACTION 71

B. SIGNAL SIMULATION 72

1. Signal Construction 72
2. Simulation Protocol 80

C. SIMULATION RESULTS 80

D SUMMARY 95

VI. CONCLUSIONS . . 97

A. SUMMARY OF WORK 97

B. SUGGESTIONS FOR FUTURE RESEARCH 100

APPENDIX A. FIXED-INCREMENT CONVERGENCE THEOREM 103

APPENDIX B. SIMULATION RESULTS 107

APPENDIX C. MATLAB CLASSIFICATION PROGRAMS 147

A. COMMON PROGRAMS 147

1. Controlling Program: simmsnn_compare.m 147
2. Feature Simulation 153
3. Modulated Signal Simulation and Feature Extraction 156
4. Data Conditioning and Display 162

V1U

B. CLASSIFICATION METHODS 168

1. Statistical Classifier 168
2. Perceptron 170
3. Common Mean Separator Programs 172
4. Standard Mean Separator 175
5. Preconditioned Input Data (MSNN Mod 1): simmsnnjC.m 180
6. Normalized Projection Space (MSNN Mod 2) 182
7. Standard MSNN with VMR Termination (MSNN Mod 3) 188

LIST OF REFERENCES 193

INITIAL DISTRIBUTION LIST 195

IX

THIS PAGE INTENTIONALLY LEFT BLANK

LIST OF FIGURES

Figure II-1: Biological Neuron. From Ref. [Hagan, etal, 1996, p. 1-8] 4

Figure II-2. Artificial Neuron. After Ref. [Hagan, et al, 1996, p. 4-4] 5

Figure ni-1. Linearly Separable Classes 11

Figure m-2. Single Perceptron Processing Element. After Ref. [Hagan, et al, 1996, p.

4-4] 12

Figure m-3. hardlim Activation Function 13

Figure m-4. Multiple Perceptron Neural Network. After Ref. [Hagan, et al, 1996, p.

4-4] 13

Figure DI-5. MSNN Projection 17

Figure HI-6. MSNN Class Typing 18

Figure III-7. MSNN Processing Element 19

Figure ni-8. logsig Activation Function 20

Figure ffl-9. 3-Class MSNN: Training 22

Figure HI-10. 3-Class MSNN: Typing 26

Figure ITI-11. Neuron Maps for Hypothetical 3-Class Typing 28

Figure m-12. 3-Class MSNN: Decision-Making 29

Figure IH-13. Anomalous MSNN Classification Situation 31

Figure IH-14. Postulated Effect of Data Preconditioning 32

Figure rH-15. Relative Significance of Mean Separation to Variance 35

Figure HI-16. Variance-Mean Ratio 38

Figure ni-17. Example of Projected Data Distribution 40

Figure ni-18. Example of Projected Data Distribution 40

Figure ni-19. Example of Projected Data Distribution 41

Figure ni-20. Example of Projected Data Distribution 41

Figure IV-1. Example of 3-Feature Data for Classification (low noise) 48

Figure rV-2. Example of 3-Feature Data for Classification (high noise) 48

Figure rV-3. Example of 1-Feature Data for Classification 53

Figure IV-4. MSNN Neuron Map of 1-Feature Data 53

XI

Figure IV-5. MSNN Local and Global Surface and Contour Plots 54

Figure F/-6. Example of 2-Feature Data for Classification (low noise) 55

Figure IV-7. Example of 2-Feature Data for Classification (high noise) 56

Figure IV-8. MSNN Neuron Map of 2-Feature Data (low noise) 57

Figure IV-9. MSNN Local and Global Surface and Contour Plots (low noise) 57

Figure IV-10. MSNN Mod 1 Neuron Map of 2-Feature Data (low noise) 58

Figure IV-11. MSNN Mod 1 Local and Global Surface and Contour Plots (low noise).58

Figure IV-12. MSNN Mod 2 Neuron Map of 2-Feature Data (low noise) 59

Figure IV-13. MSNN Mod 2 Local and Global Surface and Contour Plots (low noise). 59

Figure IV-14. MSNN Mod 3 Neuron Map of 2-Feature Data (low noise) 60

Figure IV-15. MSNN Mod 3 Local and Global Surface and Contour Plots (low noise).60

Figure IV-16. MSNN Neuron Map of 2-Feature Data (high noise) 61

Figure IV-17. MSNN Local and Global Surface and Contour Plots (high noise) 61

Figure IV-18. MSNN Mod 1 Neuron Map of 2-Feature Data (high noise) 62

Figure IV-19. MSNN Mod 1 Local and Global Surface and Contour Plots (high noise) 62

Figure IV-20. MSNN Mod 2 Neuron Map of 2-Feature Data (high noise) 63

Figure IV-21. MSNN Mod 2 Local and Global Surface and Contour Plots (high noise) 63

Figure IV-22. MSNN Mod 3 Neuron Map of 2-Feature Data (high noise) 64

Figure IV-23. MSNN Mod 3 Local and Global Surface and Contour Plots (high noise) 64

Figure rV-24. Performance Comparison: Simulated Features (3) 67

Figure IV-25. Performance Comparison: Simulated Features (10) 67

Figure rV-26. Performance Comparison: Simulated Features (50) 67

Figure V-l. Simulated 2-ASK Signal (no noise) 75

Figure V-2. Simulated 2-PSK Signal (no noise) 75

Figure V-3. Simulated 2-FSK Signal (no noise) 76

Figure V-4. Simulated 2-ASK Signal (SNR = 20 dB) 77

Figure V-5. Simulated 2-PSK Signal (SNR = 20 dB) 77

Figure V-6. Simulated 2-FSK Signal (SNR = 20 dB) 78

Figure V-7. Simulated 2-ASK Signal (SNR = 10 dB) 78

Xll

Figure V-8. Simulated 2-PSK Signal (SNR = 10 dB) 79

Figure V-9. Simulated 2-FSK Signal (SNR = 10 dB) 79

Figure V-10. Performance Comparison: Simulated Signals (11) 84

Figure V-ll. Performance Comparison: Simulated Signals (26) 84

Figure V-12. Performance Comparison: Simulated Signals (51) 84

Figure V-13. MSNN Neuron Map of 11-Features Sinmulated Signal Data (SNR = 20

dB) • 87

Figure V-14. MSNN Mod INeuron Map of 11-Features Sinmulated Signal Data (SNR =

20 dB) 88

Figure V-15. MSNN Mod 2 Neuron Map of 11-Features Sinmulated Signal Data (SNR =

20 dB) 89

Figure V-16. MSNN Mod 3 Neuron Map of 11-Features Sinmulated Signal Data (SNR

=90 20 dB) 90

Figure V-17. MSNN Neuron Map of 11-Features Sinmulated Signal Data (SNR = 10

dB) '. 91

Figure V-18. MSNN Mod INeuron Map of 11-Features Sinmulated Signal Data (SNR =

10 dB) 92

Figure V-19. MSNN Mod 2 Neuron Map of 11-Features Sinmulated Signal Data (SNR =

10 dB) 93

Figure V-20. MSNN Mod 3 Neuron Map of 11-Features Sinmulated Signal Data (SNR =

10 dB) 94

Figure B-l. Statistical Classifier Performance Results 145

Figure B-2. Perceptron Performance Results 145

Figure B-3. MSNN Performance Results 145

Figure B-4. MSNN Mod 1 Performance Results 146

Figure B-5. MSNN Mod 2 Performance Results 146

Figure B-6. MSNN Mod 3 Performance Results 146

Xlll

THIS PAGE INTENTIONALLY LEFT BLANK

XIV

LIST OF TABLES

Table IH-1. Neural Network Applications. After Ref. [Hagan, et al, 1996, pp. 1-5 -1-6]

 7

Table IH-2. Hypothetical Class pi, p2, P3 Output from Trained Neuron 1 (Class pi vs

Class P2) • •••• 27

Table IH-2a. Hypothetical Class pi, p2, P3 Output from Trained 3-Class Neural Network

 27

Table IV-1. Observed Percentage of Perceptron Non-Type Classification: Simulated

Features 51

Table V-l Simulated Signal No-Noise Performance Results (Ave Percent Correct

Classification) 81

Table V-2 Statistical Classifier Performance Before and After Data Conditioning (Ave

Percent Correct Classification) 82

Table V-3. Observed Percentage of Perceptron Non-Type Classification: Simulated

Communication Signals 85

Table B-l. Confusion Matrices for Simulated Feature Trials (Three-Class, Three-

Features): Statistical Classifier 109

Table B-2. Confusion Matrices for Simulated Feature Trials (Three-Class, Ten-

Features): Statistical Classifier 110

Table B-3. Confusion Matrices for Simulated Feature Trials (Three-Class, Fifty-

Features): Statistical Classifier ...Ill

Table B-4. Confusion Matrices for Simulated Feature Trials (Three-Class, Three-

Features): Perceptron 112

Table B-5. Confusion Matrices for Simulated Feature Trials (Three-Class, Ten-

Features): Perceptron 113

Table B-6. Confusion Matrices for Simulated Feature Trials (Three-Class, Fifty-

Features): Perceptron 114

XV

Table B-7. Confusion Matrices for Simulated Feature Trials (Three-Class, Three-

Features): MSNN 115

Table B-8. Confusion Matrices for Simulated Feature Trials (Three-Class, Ten-

Features): MSNN 116

Table B-9. Confusion Matrices for Simulated Feature Trials (Three-Class, Fifty-

Features): MSNN 117

Table B-10. Confusion Matrices for Simulated Feature Trials (Three-Class, Three-

Features): MSNN Mod 1 118

Table B-l 1. Confusion Matrices for Simulated Feature Trials (Three-Class, Ten-

Features): MSNN Mod 1 119

Table B-12. Confusion Matrices for Simulated Feature Trials (Three-Class, Fifty-

Features): MSNN Mod 1 120

Table B-13. Confusion Matrices for Simulated Feature Trials (Three-Class, Three-

Features): MSNN Mod 2 121

Table B-14. Confusion Matrices for Simulated Feature Trials (Three-Class, Ten-

Features): MSNN Mod 2 122

Table B-15. Confusion Matrices for Simulated Feature Trials (Three-Class, Fifty-

Features): MSNN Mod 2 123

Table B-16. Confusion Matrices for Simulated Feature Trials (Three-Class, Three-

Features): MSNN Mod 3 124

Table B-17. Confusion Matrices for Simulated Feature Trials (Three-Class, Ten-

Features): MSNN Mod 3 125

Table B-l8. Confusion Matrices for Simulated Feature Trials (Three-Class, Fifty-

Features): MSNN Mod 3 126

Table B-l9. Confusion Matrices for Simulated Modulated Signals (Three-Class, Fifty-

One Features): Statistical Classifier 127

Table B-20. Confusion Matrices for Simulated Modulated Signals (Three-Class, Twenty-

Six Features): Statistical Classifier 128

XVI

Table B-21. Confusion Matrices for Simulated Modulated Signals (Three-Class, Eleven:

Features): Statistical Classifier 129

Table B-22. Confusion Matrices for Simulated Modulated Signals (Three-Class, Fifty-

One Features): Perceptron 130

Table B-23. Confusion Matrices for Simulated Modulated Signals (Three-Class, Twenty-

Six Features): Perceptron 131

Table B-24. Confusion Matrices for Simulated Modulated Signals (Three-Class, Eleven-

Features): Perceptron 132

Table B-25. Confusion Matrices for Simulated Modulated Signals (Three-Class, Fifty-

One Features): MSNN 133

Table B-26. Confusion Matrices for Simulated Modulated Signals (Three-Class, Twenty-

Six Features): MSNN 134

Table B-27. Confusion Matrices for Simulated Modulated Signals (Three-Class, Eleven-

Features): MSNN 135

Table B-28. Confusion Matrices for Simulated Modulated Signals (Three-Class, Fifty-

One Features): MSNN Mod 1 '. 136

Table B-29. Confusion Matrices for Simulated Modulated Signals (Three-Class, Twenty-

Six Features): MSNN Mod 1 137

Table B-30. Confusion Matrices for Simulated Modulated Signals (Three-Class, Eleven-

Features): MSNN Mod 1 138

Table B-31. Confusion Matrices for Simulated Modulated Signals (Three-Class, Fifty-

One Features): MSNN Mod 2 139

Table B-32. Confusion Matrices for Simulated Modulated Signals (Three-Class, Twenty-

Six Features): MSNN Mod 2 140

Table B-33. Confusion Matrices for Simulated Modulated Signals (Three-Class, Eleven-

Features): MSNN Mod 2 141

Table B-34. Confusion Matrices for Simulated Modulated Signals (Three-Class, Fifty-

One Features): MSNN Mod 3 142

XVU

Table B-35. Confusion Matrices for Simulated Modulated Signals (Three-Class, Twenty-

Six Features): MSNN Mod 3 143

Table B-36. Confusion Matrices for Simulated Modulated Signals (Three-Class, Eleven-

Features): MSNN Mod 3 144

XVlll

ACKNOWLEDGEMENTS

I wish to express my gratitude

. . .to my thesis advisor, Professor Monique Fargues. This study could not have been

completed without your guidance. Responsive to my six-month absence from the Naval

Postgraduate School while I served on the CNO's Strategic Studies Group XVm and the

subsequent "re-think" of my thesis topic upon my return, your advice was essential to

ensuring I made the necessary progress. Yet, you allowed me the freedom to chart the

course of this endeavor. I am thankful for having had the opportunity to work with you.

.. .to Professor Ralph Hippenstiel for your assistance throughout this effort. It has been

an honor to work with you.

. . .to my family, who always supported me. Although I do not show my appreciation

nearly often enough, please know that I could not have achieved anything without you

being by my side.

.. .to the memory of my wife Debbie, who showed me the true meaning of courage and

strength in the face of adversity. Despite the loneliness she often tolerated as a Navy

spouse and the eventual challenges she endured, Debbie always unselfishly kept my well

being, success, and happiness as her primary concern. You will always be in my heart. I

love you.

. . .and most importantly, to the Heavenly Father, Jesus Christ the Savior, and the Holy

Spirit. Without you, Lord, nothing is possible; but with you, everything is gained.

XIX

THIS PAGE INTENTIONALLY LEFT BLANK

XX

I. INTRODUCTION

BACKGROUND

In "A Maritime Strategy for the Naval Century," Admiral Jay L. Johnson, Chief

of Naval Operations, declared, "Just as naval forces command the operational domain of

the seas, we seek to command cyberspace, by harnessing today's technology to

revolutionize naval operations" (Johnson, 2000). The explosion of digital technology

has indeed paved the way for the revolution in military operations currently enjoyed.

Advances in undersea warfare, the cooperative engagement capability, space and

terrestrial communications, and computer networks provide the warrior with the potential

to exploit the battlespace in ways previously unknown. Unfortunately, this godsend is a

two-edge sword. Although it gives the military commander the promise of attaining

greater situational awareness, the tidal wave of data severely impairs his decision-making

capacity. Instead of assisting, the data-rich, information-poor, and knowledge-starved

warfighter is incapacitated and confused by the abundance of data that inundates him.

More data is not needed; enhanced information and knowledge are essential.

B. THESIS OBJECTIVES

This proof of concept study continues the development of the Mean Separator

Neural Network (MSNN) classification tool originally proposed by Duzenli and Fargues

for identification of underwater signals, modifying it to increase performance robustness

(Duzenli and Fargues, 1998). As a key component in the warfighter's observe-orient-

decide-act loop, decision tools like the MSNN signal classifier promote data evolution to

information. Using The MathWork's MATLAB 5, version 5.3, modification of this

neural network are developed to improve its classification capabilities. The intent is to

increase performance robustness and thereby improve data categorization by accounting

for statistical parameters not considered in the original MSNN formulation. It is entirely

expected that incorporation of these additional attributes will increase computational

burden; but the effects of this extra load are expected to be unremarkable and therefore

will not be rigorously monitored. The implementation of the proposed MSNN schemes

will be measured against two unrelated techniques used as benchmarks: (1) a quadratic

classifier modeled purely on the statistical characteristics of the input data and (2) a

single layer perceptron neural network. The accuracy of each classification method will

be verified by its precision in properly typing artificial feature vectors and features

extracted from simulated signal modulations. If proved successful, the altered MSNN

method offers a technique that will assist the warfighter in attaining greater battlespace

and infosphere acuity.

C. THESIS ORGANIZATION

Following this introduction, Chapter II presents artificial neural networks.

Chapter HI delves into a principal application of neural network: pattern recognition and

classification. The basis of the quadratic statistical classifier, perceptron neural network,

and MSNN schemes are introduced and examined. In Chapter IV, these classification

techniques are tested through trial simulations. Analysis of the results provides

rudimentary insight into the feasibility of each classifier. Next, Chapter V assesses the

classification techniques considered by categorizing synthetic communication signals.

Feature extraction is briefly discussed to emphasize this aspect of signal classification.

Chapter VI summarizes the results of this study and recommends avenues for continued

work.

Appendix A details an important proof of perceptron neural networks: the Fixed-

Increment Convergence Theorem. Appendix B contains the empirical results of the

Chapters IV and V investigations. Appendix C documents the MATLAB code written to

conduct the experimental portions of this study.

II. NEURAL NETWORKS

The military commander needs advanced applications to complement the

advancing appliances that have become commonplace in today's society. Indeed,

Moravec claims that by the year 2030, desktop computers will have the processing power

equal to the human brain (Moravec, 1999). But such capabilities are useless unless they

simplify the mundane tasks dealt with on a routine basis and assist in times of crisis. For

the warfighter, this amounts to creating decision aids that not only ingest data but also

conveys knowledge. As a stepping stone to attaining such knowledge management

capabilities, tools that communicate information to the operator, and not just delivers

data, are required.

The Mean Separator Neural Network at the focus of this thesis is designed to

impart information. Used as a signal classifier, this network converts raw data to useful

information about the target source. But to understand how this system operates, a basic

understanding of neural networks may prove useful. This chapter provides this

fundamental insight into neural networks, starting with the biological inspiration for such

devices: the brain.

A. BIOLOGICAL INSPIRATION

As the name implies, neural networks are structured after the workings of the

brain. The question to ask then becomes why and what advantage does this provide over

conventional computational devices? Indeed, studies have shown that neurons in the

human brain are much slower than silicon logic gates. The computers of 1991, for

example, were five to six orders of magnitude faster than the brain. Single events that

take nanoseconds in computers to process, require milliseconds in the cerebral cortex.

Yet, it is common knowledge that the human brain is more powerful than even today's

computers. For instance, perceptual recognition takes 100-200 milliseconds for people,

but requires days for computers. In accomplishing such tasks, the brain is also much

more energy efficient. While computers consume 10"6 Joules/sec per operation, the

energy expenditure of the brain is only 10"16 Joules/sec per operation. If computers

process individual instructions more quickly than the brain, how does the biological

neural network operate more efficiently?

The brain achieves such performance levels by utilizing a highly complex, non-

linear network of parallel processing units. Nearly a quadrillion (1015) connections link

the one hundred billion processing elements (called neurons) that make up the brain.

Shown in Figure II-1, these neurons are composed of three principal components. The

dendrites, the axon, and the cell body. The dendrites and axons are the communication

lines that convey electro-chemical messages between adjacent neurons. Dendrites are the

receptive appendages; axons, the transmission appendages. The connections formed by

these components are the brain's synaptic links. Between the dendrites and axon,

information is processed by the cell body. The arrangement of the neurons, the strength

of the synaptic links, and the summing and thresholding of the cell body determines the

processing power of the biological neural network. (Haykin, 1994, pp. 1-4), (Hagan, et

al, 1996, pp. 1-8 - 1-9)

Dendrite

Figure II-l. Biological Neuron. From Ref. [Hagan, et al, 1996, p. 1-8]

B. COMPUTER IMITATION

Because of its massively parallel and complex structure, the brain operates more

efficiently than conventional computers. It is this capability that artificial neural

networks strive to replicate. Like the anatomical prototype, artificial neural networks use

experiential knowledge to understand and interact with the environment. That is,

artificial neural networks learn. The artificial network process input data to approximate

a situation and stores this learned information as "synaptic" weights. Hence, an artificial

processing element can be modeled after the biological neuron, as shown in Figure II-2.

In this diagram, the weighted input link, w, replace the dendrites and synapses; a linear

summer and a non-linear activation function, q>, the cell body; and the output link, a, the

axon. As a result, the artificial neuron output, defined in Figure II-2 as

a = cp(wT .p + b), (2.1)

illustrates that the non-linear activation function, like the cell body, determines the

neuron's characteristic ability to solve specific problems.

Using this basic building block, parallel-processing networks can be constructed.

Feeding the same input to several neurons results in a network layer of parallel

| "Dendrite" "Cell Body" "Axon"

-> a

lxl

Summer Function

p i t j w w *K1J u. *KzJ
lxR

b
k

Input

1 3

Art

a

ificial Neuron

Figure II-2. Artificial Neuron. After Ref. [Hagan, et al, 1996, p. 4-41

processing elements. The data input to these processing element could be a vector or

matrix of information originating from an external sensor or an internal storage device.

But, when this feed comes from an upstream neural layer, or alternatively, when the layer

output supplies a subsequent downstream network layer, complex network structures are

assembled. Thus, even though current neural network architectures fall short of the

physiological capabilities, artificial neural networks begin to resemble the human brain.

With this model of an artificial neuron, a single-layer Mean Separator Neural

Network will be built and examined. Further details on neural networks can be obtained

by consulting listed references (Dayhoff, 1990), (Fausett, 1994), (Hagan, et al, 1996),

(Haykin, 1994).

III. CLASSIFICATION

Chapter II briefly discussed neural network fundamentals. In Chapter HI, a

specific application of this computational tool will be considered.

Adept at solving problems, neural networks are being used in a growing number

of diverse fields. In addition to applications in engineering, mathematics, and the

physical sciences, they have proved useful in medicine, banking and finance, and

literature. Table IH-1 lists a few of the fields impacted by neural network advancements.

INDUSTRY APPLICATION

Aerospace
Flight Path Simulation

Aircraft Control
Component Simulation and Fault Detectors

Automotive Automatic Guidance Systems

Banking
Document Readers

Credit Application Evaluations

Defense
New Sensors

Target Tracking and Weapon Steering
Object Discrimination

Electronics
IC Chip Layout and Process Control

Failure Analysis
Code Sequence Prediction

Entertainment
Animation

Special Effects

Finance and Securities
Market Analysis and Forecasting

Real Estate Appraisal
Credit Line Use Analysis

Insurance Policy Application Evaluation

Medical
EEG and ECG Analysis

Breast Cancer Cell Analysis
Hospital Quality Improvement

Oil and Gas Exploration

Robotics
Manipulator Controllers

Vision Systems

Speech
Speech Recognition and Compression

Text to Speech Synthesis

Telecommunications
Image and Data Compression

Real-Time Language Translator
Automated Information Services

Table III-l. Neural Network Applications. After Ref. [Hagan, et al, 1996, pp. 1-5 -1-6].

Common among these applications is a reliance on the neural network's natural

ability to recognize patterns. As a result, neural networks are commonly tasked with

separating data into a finite number of classes, i.e., classifying. Classification is the task

of categorizing observation into distinct groups based on characteristics of the class. For

example, when separating fruit, shape, weight, size, color, texture, or smell could be used

to differentiate oranges from apples or bananas.

The attributes used to separate the distinct classes are called features. These

features, arranged as vectors, comprise the problem's input or data space. Although it

may seem that the likelihood of correct classification increases with higher feature space

dimensionality, this is not necessarily the case. For instance, consider a person wishing

to purchase an automobile. He may convey to a dealer in meticulous detail the

specifications he desired (e.g., exterior color, type of interior, engine horsepower, gas

mileage, trunk capacity, wheel base length, audio components, etc.) so as to identify a

particular vehicle. Imagine the dealer's exasperation as the customer goes through this

litany. The main disadvantages of the precision characterized in this example are

1. irrelevant and/or noisy features may be taken into account,

2. a requirement for a large sample to assess the robustness of the features used.

In addition, relying on such a large feature space increases the computational load and,

consequently, processing time of the problem. (Duzenli and Fargues, 1998)

But alternatively, consider the overzealous salesman who bombards a customer

with countless questions without receiving any satisfactory answers in return. Often, the

particular pieces of information needed may not be obtainable. Solving the classification

dilemma thereby becomes a problem of identifying an algorithm that will type

observations to the correct class when only a reduced feature space, either by design or as

dictated by the situation, is available.

Feature determination and extraction are vital aspects of the classification

problem; however, the main emphasis of this thesis will be algorithm identification and

testing. As will be seen, the method by which neural networks classify is dependent on

the algorithm used. But, by no means are neural networks the only tool used to separate

data into proper classes. In a paper presented at the 1999 Military Communication

International Symposium, Sills identifies methods studied to classify modulated signals.

These efforts focused on frequency-domain parameters (Ghani and Lamontagne, 1993),

(Lallo, 1999); statistical attributes of various signal parameters (Sills, 1999); and higher

order statistics of cyclostationary signals (Reichert, 1992). With regards to neural

networks, these parameters could constitute the features of interest.

Specifically, this thesis continues the development of the Mean Separator Neural

Network (MSNN) originally proposed by Duzenli and Fargues for classifying underwater

signals (Duzenli and Fargues, 1998). To gauge its performance, the MSNN classification

capability was measured against a single-layer perceptron neural network - the least

complex neural network used for classification - and a classifier based solely on the

statistical characteristics of a particular class. This statistical classifier is considered next.

A. STATISTICAL CLASSIFIER

A statistical classifier served as one benchmark for the results obtained in this

study. Statistical classifiers model the problem space based on data attributes (such as

mean, covariance, or any higher order moment). Consequently, they may also be known

as parametric classifiers. Non-parametric classifiers, on the other hand, approximate the

problem based on actual empirical data. Neural networks are non-parametric classifiers.

For this study, the statistical classifier used was the quadratic classifier derived

from the Bayes likelihood ratio, which has been shown to minimize error probability

(Fukunaga, 1990, p. 124). The formulation of the decision rule governing the quadratic

classification algorithm follows.

Consider a space composed of m classes, namely ii\, nz, %, . . . n^. At some

time, an observation x belonging to class 7ti occurs. The decision rule will classify x to

, 7i* so as to minimize error; that is classify x to 7t*sjti. Setting the loss function for this

situation as

^K)={° 'lrj. (3-D

implies that no loss arises when correct classification occurs, while unit loss results from

improper classification. From Equation 3.1, the decision rule is given by

7I*(x)=7lj if P(7Ci | X) > P(7Cj | x), Vj, j*i. (3.2)

Using Bayes' Rule to rewrite the conditional a posteriori probabilities in terms of the

density function p(x|7rk) and the a priori probabilities Pk leads to

7t*(x) = 7ii if pCxfTtj)^ >p(x|7tj)Pj, Vj, j*i. (3.3)

For a two class (i =1, j=2) multi-variant normal system, p(x|7tk) can be expressed as

P(xl^) = |2^[1/2exp[-i(x-nk)
Ti:-1(x-tik)l (3.4)

with Z the class covariance matrix, |x the class mean vector, and x the observation.

Substituting Equation 3.4 into the inequality of Equation 3.3 yields

**00 = *i if |~ I ,i/2exp[-i(x-^i)Tsr1(x-^)]P1 (3.5)

> \2TZL |^eXpt~^(X "»l2)T^1<x-|i2)]p2.

Since both sides of the inequality are positive, taking the natural logarithm of each term

in Equation 3.5 results in

ln]^-(x-fi1)
T2:i-1(x-fi1) + 21nP1>ln|^-T-(x-fi2)

T2:;1(x-fi2) + 21nP2. (3.6)
ril F2I

Alternatively, Equation 3.6 can be expressed as

ln|i:2| + (x-fi2)
T2:2

1(x-n2)-21nP2>ln|S1| + (x-fi1)
T2:i-1(x-n1)-21nP1. (3.7)

When Equations 3.6 or 3.7 are true, observation x is categorized as belonging to class 7ti.

Considering the original problem of m classes, the decision criteria is stated here

as Equation 3.8:

d; (x) = ln|Ei I + (x - |i.)T E:1 (x - p.) - 21nP;. (3.8)

10

Therefore, using the mean vector and covariance matrix of each class, m decision values

can be calculated for the observation x. The correct classification of x is the class that

gives the lowest value for d. (Brunzell and Eriksson, 1999)

Unfortunately, Equation 3.8 requires that the data set be normally distributed.

When this is the case, the quadratic classifier performs remarkably well.

B. PERCEPTRON

1. Principles of Operation

Inspired by the assertion that "in spite of its apparent simplicity, the (single layer

perceptron) trained by adaptive optimization techniques is in fact a very rich family of

linear classifiers," the second benchmark used to gauge the MSNN performance was a

perceptron neural network (Raudys, 1996). Developed in the 1950s by Frank Rosenblatt,

perceptrons are designed to linearly separate adjacent class groups (Figure HI-1). Each

boundary in Figure IQ-1 is determined using a separate perceptron component, shown in

Figure m-2. In this figure, the hard limit layer represents the actual processing element.

The input block, comprised of R-dimensional vectors, p, corresponds to the training or

observation data. For R greater than two, the decision boundary shown in Figure Ht-l

class nA ■'■'■' -J

/(

g&

■ ■ -w ^» ■ ■ ■■ "gaga»*

/\ \ class n2

Jf

class TC3

Figure III-l. Linearly Separable Classes.

11

w

lxR

hardlim

lxl n cp a
lxl

b
lxl

Input Hard Limit Layer

Figure III-2. Single Perceptron Processing Element. After Ref. [Hagan,
et al, 1996, p. 4-4]

becomes a hyperplane. The weight row vector, w, and bias scalar, b, transform the input

observations into a scalar output n, which is then non-linearly mapped by the activation

function, (p. The perceptron output therefore equates to

a = ^(w.p + b). (3.9)

The activation function <p normally used for the perceptron is the hard limit, or hardlim.

Figure IH-3 illustrates the characteristic of this transformation.

As shown in Figure ni-3, the only possible outputs of a single perceptron neural

network are 0 and 1. Consequently, the neural network can only separate two classes; the

decision boundary, for example, isolating class 7ti (network output 0) from class 7t2

(network output 1).

This decision boundary is specified by the hardlim argument and is represented

mathematically by the linear equation

w.p + b = 0. (3.10)

12

0.8

s °-6

¥
i5 0.4
f

0.2

-0.2

1 1 I 1 1 1
1 1 1 1 1 1
1 t 1 1 1 1

! i fl! if b>0
hardlim(n)i = < i i

' »10' otherwise

i
i

1
1

l

till
till

1
1

l
1

1 1 1 1
1 t 1 1
1 1 1 1
1 t 1 1

1 1 1 1

Figure III-3. hardlim Activation Function.

If the inner product of the input vector p and the weight vector w is greater than -b, the

hardlim non-linear transformation will map to 1; if the inner product is less than -b,

hardlim will map to 0. This provides the distinction needed for classifying observations.

P w '-— hardlim
Rxti

w

HxR T A n ^f (p\ p a

i
J HXTl V^ / HXTl

>

d Limit Layer Input

1

Hai

Figure III-4. Multiple Perceptron Neural Network. After Ref. [Hagan,
et al, 1996, p. 4-4]

13

Since each perceptron can distinguish only two different classes, classification

problems involving more than two choices require a multiple-neuron architecture, n

(rounded up to the next integer) perceptrons are needed to classify 2^ different classes.

The three-class case shown in Figure III-l, for instance, requires two processing

elements. Using matrix-vector notation, Figure ELI-2 can be modified to illustrate the

general case of a multi-perceptron architecture and multiple trials, r\ (Figure III-4).

With \x processing elements, the decision rule for multi-neuron networks must

consider a ^-dimensional output vector of Is and Os. Each unique combination of 1 and 0

corresponds to a particular class. The typing of an input observation is determined by

matching the neuro-classifier output to one of these different sequences. Unfortunately,

when the number of possible bit strings exceeds the number of classes, the input data may

type to a non-class sequence. This frequently occurred during the simulations discussed

in Chapter IV and V.

In summary, as an observation is processed through a trained perceptron network,

the classifier output will identify the appropriate class type for both single and multiple

neuron cases. Training the neuro-classifier to determine the proper output is discussed

next.

2. Training

Prior to implementing the perceptron neuro-classifier, the network must be trained

to recognize different classes. This training is accomplished through a supervised

learning approach in which sets of input data and corresponding target output are

presented to the neural network. The network batch processes the input observations for

comparison of the resulting output to the desired output. A difference error between

these two output values is calculated and used to update the perceptron parameters - the

network's weight vector and bias. Since the network can only output 0 or 1, the error

generated is limited to either 0 or ±1 (or, for multi-perceptron networks, a vector of Os

and ±ls). If the error is zero, no weight or bias update occurs.

When the error is non-zero, the weight vector is updated by adding a correcting

term (the product of the error and input data) to the weight vector. For the bias, the error

14

is simply added to the bias. Mathematically, Equation 3.11 and 3.12 compactly show this

perceptron learning rule for the general case of multiple neuron networks as

wnew =w0ld+e-pT = wOId + (t-a)-pT (3.11)
bnew=bo.«f+e = bo1d + (t_a) (3_12)

These operations improve classification performance by adjusting the slope and

position of the perceptron decision boundary towards the input data point. In doing so,

the linear separator incrementally rotates and translates to place the input data on the

correct side of the decision boundary.

3. Training Termination

An iterative process, perceptron training involves cycling through the input/target

output pairs - each iteration through the entire data set constituting an epoch - until

network convergence. Here, convergence refers to reaching and maintaining a steady

state error condition. For linearly separable classes, perceptron training results in the best

case, zero-error solution within a finite number of epochs (see Appendix A).

Unfortunately, linearly separable problems are an ideal classification case.

Convergence, in general, does not imply a zero-error final state as the nature of the

classification problem may dictate that the steady state solution includes a constant error

level. Or, as another possible outcome, the neural network may not converge at all, but

instead oscillate or erratically deviate about a fixed value. And finally, even when the

network converges, there is no guarantee that this constant state will be attained within a

reasonable time period. For these less than optimal cases, termination parameters signal

when to stop network training. Typically these parameters are satisfied by reaching a

maximum number of epochs or a maximum acceptable performance level.

The simplest approach to end network training would be to reach a prescribed

maximum number of training cycles. When properly chosen, this epoch limit can assure

attaining an adequate solution. Unfortunately when specified too low, unsatisfactory

network output may result since the network would not have had sufficient time to

achieve an acceptable final weight and bias. Conversely, fixing the maximum epoch

15

setpoint too high would increase the likelihood of adequate training but at the cost of an

excessively long training period.

But, determining the number of epochs required to obtain an optimal solution

hinges on specifying what is meant by "optimal" solution. To define "optimal" in this

sense requires having a priori information of the input data distribution. For a linearly

separable classification problem, an optimal solution would lead to zero-error. For other

situations, a predetermined metric specifying an acceptable error limit, such as a

maximum mean squared error or sum of squared errors, could be used to end network

training. Regardless of the termination parameter used, prior knowledge of the input data

allows better approximation of the maximum epoch limit. Combining this maximum

number of iterations with an appropriately set performance measure provides for

adequate control of the training length.

4. Limitations

Section m.B has dealt with using the perceptron neural network for classification

purposes. Through a simple learning rule (Equations 3.11 and 3.12), perceptions can

classify to zero-error solutions in a finite amount of time. Unfortunately, as linear

classifiers, perceptrons accomplish this only for linearly separable cases. As a result,

perceptron networks rarely converge to zero-error solutions, thus requiring the

implementation of termination parameters to limit network training.

This, however, is not the principle disadvantage of the perceptron network.

Recalling that the perceptron uses the hardlim transform, the network's piecewise

continuous, hence non-differentiable, activation function does not allow application of

mathematical optimization techniques. Solving classification problems, therefore,

becomes tedious as the iterative process amounts to "hunting-and-pecking" for the best fit

(i.e., smallest error) solution. This trial-and-error method limits perceptron efficacy.

Yet despite these inadequacies, improvements in perceptron efficiency are

possible with multiple layer network design. The next section, however, will show that

by design the MSNN is a single layer neural network. Because of the focus on this

architecture, this investigation only considered single layer perceptron networks.

16

C. MEAN SEPARATOR

As previously mentioned, classification requires (1) the extraction and reduction

of features that characterize the distinct categories and (2) the application of an analytical

tool that evaluates and separates observations. This thesis, concerned principally with the

latter requirement, is focused on the Mean Separator Neural Network (MSNN) originally

presented by Duzenli and Fargues (1998). In addition, three variations to this standard

mean separator algorithm were investigated to determine if enhanced system performance

and robustness could be achieved.

1. Principles of Operations

The MSNN differentiates two classes by evaluating one-dimensional projections

of each data distribution onto varying axes to ascertain which transformation direction

maximizes the spread between the class mean values; hence the term "mean separator."

Figure m-5 illustrates this concept in two-dimensional space by showing two possible

mean separator projection axes. The ellipses represent two classes and the shading within

each conveys the data distribution; the darker regions being more densely populated than

Figure III-5. MSNN Projection. Projection lines and data distribution.
Due to greater mean separation, (a) is the preferred
projection.

17

the lighter. The orthogonal axes correspond to two elements of the feature space. The

slanted solid lines indicate the projection axes and the slanted dashed lines are the

projection of the class means onto these axes.

Of the two projections shown in Figure m-5, case (a) with the larger mean

separation depicts the preferred selection. Class typing of future observations would then

entail projection of the data point onto this axis and association to the nearest class mean.

As shown on Figure m-6, the observation plotted would type to the class Tii.

Figure III-6. MSNN Class Typing.

Multiple projection axes are needed to distinguish all pairwise combinations when

considering more than two categories. Using the MSNN, Duzenli investigated two

methods to identify observations as one of more than two classes. One algorithm

determined all possible pairs of classes. For the general case of m classes, namely 7ii, %2,

7t3,... 7tm, k possible combination exist; k determined by

k =
' m>

v2,

m! m(m-l)
2!(m-2)! 2

Each of the k projections corresponds to a separate processing element in the MSNN

(3.13)

18

An alternate classification method suggested by Duzenli separates the data space

into class i and non-class i observations. Segmenting the data as such reduces the

required number of processing elements to m, the class number. This second alternative

involves a lower computational requirement due to the significantly fewer neurons and,

therefore, would appear to be the better choice. Yet, prudence is cautioned when using

this latter alternative since assembling the data into class/non-class clusters may alter

statistical parameters so as to preclude accurate data typing. Because of this, the strict

pairwise routine was followed, irrespective of the higher number of neurons needed.

(Duzenli, 1998)

The mechanics of MSNN operations involves three distinct phases: training,

typing, and decision-making. Explaining these stages, however, requires understanding

the network's basic building block: the MSNN processing element, or neuron. This will

be considered next.

2. Processing Element

Shown as Figure m-7, schematically the MSNN processing element differs little

from the neuron used in perceptron neural networks. Aside from the inclusion of a scalar

Figure III-7. MSNN Processing Element

19

multiplier and adder that serve to increase the neuron's dynamic range by first amplifying

and then shifting the activation function output, the principle difference between the

perceptron and mean separator processing elements is choice of activation function.

Recall that the perceptron uses a hard limit function that maps the neural output to either

0 or 1. Since this transform is not analytic, a principle drawback of the perceptron was

that numerical techniques could not be used to optimize a solution.

In contrast, the MSNN does use a differentiable activation function, 4>: the

logarithmic-sigmoid, or logsig, function. The characteristic and closed form equation for

the logsig function (Figure III-8) define a smooth curve that gradually approaches 1 as its

argument increases to positive infinity; and 0, as the argument decreases to negative

infinity. Hence, differential optimization methods may be applied to train and improve

neuron performance. This network training will be addressed in more detail shortly.

Figure m-7 shows that the MSNN output equals

MSNN neuron output = 20 • logsig(w. p + b) -10. (3.14)

As mentioned before, Equation 3.14 incorporates two scalar terms to increase network

classification sensitivity. Arbitrarily chosen, the gain value of 20 amplifies the logsig

1.2

0.8

•g 0.6
a
«i en

0.4

0.2

-0.2

logsig(n) = 1 /*""
iJL+ expC-n) **---/

/

I
^y \

-10 10

Figure III-8. logsig Activation Function.

20

output while the threshold term sets the MSNN neuron output range at -10 to 10.

Implementing this MSNN neural output results in a performance measure and training

method that controls weight and bias updates.

3. Training

Equation 3.14 defines the MSNN non-linear transformation. But before this

equation can be used for classification, network training is required. This training

amounts to determining the projection parameters - that is, the weight vector, w, and the

bias scalar, b - that maximizes class separation. For the perceptron, these parameters

simply defined class boundary lines and were found iteratively by cycling through input

data/target output pairs until a specific performance parameter was satisfied. For the

MSNN, these weight and bias parameters identify the projection axis upon which

maximal mean separation occurs. Consecutive epochs also refine the MSNN parameters,

but since the logsig activation function is analytic, optimization techniques can be used.

This requires identifying a MSNN performance function.

a. Mean-Difference Performance Function

Duzenli defined a mean-difference (MDj projection index for the MSNN.

This thesis defines an analogous form (Equation 3.15) of his mean-difference equation

as:

MD =-[E{ (20 • <D(w. pi + b) -10) - (20 • <D(w. p2 + b) -10) }]2

= -[20-E{0>(w.pi + b)-a>(w.p2 + b)}]2, (3.15)

with E being the expectation operator and 3>, the logsig activation function (Duzenli,

1998). From this equation, the origin of the term "mean-difference" becomes clear. The

equation maps observations belonging to two separate classes, denoted by the vectors pi

and p2, using the system's performance parameters w and b. Applying the non-linear

logsig function to this linear transformation projects the pi and p2 data spaces onto a one-

dimensional projection axis. Taking the difference of the mean of these projections

yields the mean-difference.

With regards to Equation 3.15, squaring the mean-difference emphasizes

the magnitude, and not the sign, of the difference; while the leading negative sign ensures

21

upward concavity for function minimization. Recall, from Equation 3.14 that the purpose

of the scalar 20 was to increase sensitivity during class typing. Because of this gain,

Equation 3.15 gives a mean-difference range of zero (when both data distributions map to

0 or both map to 1) to -400 (when one distribution maps to 1 and the other to 0). The

former value correspond to the worse case situation; the latter, to the optimal state.

The MSNN employs supervised, batch processing of input data to train the

network. Like a perceptron that undergoes explicit supervised learning in which specific

target outputs must be associated with the input data, MSNN learning requires that the

training data be assigned to the correct class. As before, batch training refers to parallel

processing of the input observations, resulting in a single update per epoch; vice

sequential processing in which the system's weights and bias are incrementally changed

after each data input. The MSNN training process is schematically shown on Figure m-9

for a three-class classification case.

■j WEIGHT/

BIAS

I UPDATE

Input

Figure III-9. 3-Class MSNN: Training.

Figure m-9 incorporates three MSNN processing elements into a single

layer network. The training process described above prepares the neuro-classifier to

recognize classes pu p2, and p3. Unlike the other phases of MSNN implementation,

22

during the training stage each neuron simultaneously processes two classes of data, as

required by Equation 3.15. The thicker line in the network layer emphasizes this parallel

processing. For each neuron, these calculations yield MD values at the input to the

"weight/bias update" block. If this value falls below a threshold (empirically determined

to be ninety-percent of the optimal value, -360), the neuron's performance parameters

require no further training. When the MD value exceeds -360, weight and bias updates,

dw and db, are determined using a steepest descent algorithm.

b. Weight and Bias Update Equations

When the current projection index is greater than -360, the MSNN

parameters update according to equations of the form

w[k + l]=w[k] + a[k]-f1[k] (3.16)

b[k + l] = b[k] + a[k]-f2[k], (3.17)

where a[k]-fi[k] and a[k]-f2[k] adjust the weight and bias values to improve MD. a[k], a

variable learning rate parameter, dictates the incremental step-size towards this upgraded

projection index. The analytical meaning of fi[k] and f2[k] are explained next.

For convenience, Equation 3.16 and 3.17 are compacted into a single

vector equation:

z[k + l] = z[k] + a[k]f[k]. (3.18)

Reiterating that Equation 3.15 drives the weight and bias update, a Taylor's first-order

approximation of the mean-difference projection index about a known weight vector and

bias yields

MD(z[k +1]) = MD(z[k] + Az[k]) = MD(z[k]) + VMD(z[k]) • Az[k], (3.19)

with the second term combining the gradient of the performance measure and the change

in z. Seeking a trajectory to the optimal MD of -400 and recognizing that this value is

also the function's lowest possible value requires that MD(z[k+l]) < MD(z[k]). This

implies

VMD(z[k]) • Az[k] < 0. (3.20)

23

Using Equation 3.18 to define Az[k] and substituting this into Equation 3.20 results in

a[k]VMD(z[k]).f[k]<0, (3.21)

with a[k] positive by convention. Since Equation 3.21 is most negative when f[k] points

in a direction opposite that of the gradient, Equation 3.18 becomes

z[k +1] = z[k] - a[k] - VMD(z[k]). (3.22)

Similarly, Equations 3.16 and 3.17 become

w[k +1] = w[k] - a[k]^ffi (3.23)
dw[k]

b[k + l] = b[k]-a[kÄl, (3.24)
db[k]

where the appropriate partial derivative replaces the gradient term. With respect to the

weight vector and bias, the partial derivatives of Equation 3.15 are determined to be

ÖMD
—— = -800[E{<D(w.pi + b)-<D(w.p2 + b)}] (3.25)

*[E{<£'(w.pi + b)pi-<i>'(w.p2 + b)p2}]

—— = -800[E{0>(w.pi + b)-<D(w.p2 + b)}] (3.26)

*[E{0>'(w.pi + b)-<D'(w.p2 + b)}],

with O, the logsig activation function, and its derivative shown below:

1 1
O = logsig(n) = — <£'= logsig'(n) =

\2 ' l + exp(-n) exp(n)(l + exp(-n))2

Equations 3.23 and 3.24 comprise the MSNN learning rule. The update terms in these

equations correspond to the dw and db terms shown in Figure m-9 that feed back through

the neural network. (Hagan, et al, 1996, pp. 9-2 - 9-3)

As an added feature to improve network training, the MSNN step-size, or

learning rate, also updates after each iteration. Patterned after the variable learning rate

24

rules for backpropagation neural networks, the MSNN variable learning rate rules are

summarized below (Hagan, et al, 1996, pp. 12-12):

1. If after one epoch the mean-difference parameter increases by more than four-
percent (empirically determined), then the trajectory is diverging from the
desired state. Consequently, the new weight and bias updates are discarded
and the learning rate is halved to minimize movement away from the optimal
MD value.

2. If after one epoch the mean-difference parameter increases by less than four-
percent, then the trajectory is still diverging from the desired MD value. This
movement, however, is tolerable since the change in MD from the previous
value is small. For this case, the learning rate is unchanged and the new
weight and bias updates are accepted.

3. If after one epoch the mean-difference parameter decreases, then the trajectory
is approaching the optimal value. The new weight and bias updates are
accepted and the learning rate is doubled to increase movement in this
direction.

By doing this, the weight and bias update, trajectory are controlled as needed to quickly

approach optimal projection index values or to minimize divergence from an acceptable

solution.

c. Training Termination

This training scheme updates the MSNN weight vectors and bias values

until termination conditions are satisfied; either, the updated MD value is less than the

empirically established ninety-percent of optimal (< -360) or a maximum epoch limit is

reached. With the network now trained, MSNN classification next involves

parameterizing each class to establish the decision rule for separating observations. But,

before discussing these subsequent stages, one final point regarding network training

must be emphasized. From Figure ni-8 (plot of the logsig activation function) we recall

that the MSNN activation function output asymptotically approaches 0 or 1. The desired

solution for a classification problem occurs when one class maps to 0 and the other to 1,

as dictated by the argument of the logsig function. Unfortunately, when the initial weight

and bias values, instead of the class observation, dominate the output of the linear

transform used as the logsig argument, the network can become saturated after very little

25

training. In this saturated state, no further training will occur since the gradient value in

these regions is zero. In short, the network has stalled and training will terminate based

on the low learning rate (threshold set at 10"4). To prevent this, the network weights and

bias are initialized to low magnitude values and the input features are normalized.

Hence, network training begins in the sloped region of the logsig output to take

advantage of this dynamic region and improve the likelihood of satisfactory training.

If training terminates on low learning rate or high epoch cycles and not on

acceptable MD, the network is retrained after first discarding and re-initializing the

weights and biases. If training ends due to a satisfactory MD level having been reached,

the weight and bias values are stored. The MSNN is now ready to proceed to the next

phase of determining specific class identifiers.

4. Class Typing and Decision-Making

Tuned to distinguish the different classes, the MSNN must next determine a

distinct identifier for each class. Considering a three-class classification problem as

before, Figure El-10 diagrams how this is accomplished.

Recall, Figure IQ-9 showed that the neuron at the top of the diagram (neuron 1)

had been trained to separate classes pi and p2. The training data for these two classes

Pi

P2

P3

i i; I i
! ■ ! ■ !
!T; !TJ !T
!Y; !Y; !Y
|P' -,'Pi |p
|E! ;E! ;E
;I! \i\ ;3

i i i I i
Hur

Input MSNN Typing

Figure 111-10. 3-CIass MSNN: Typing.

26

will again be processed by this neuron. If trained optimally, the processing element will

map one class of data to 10 and the other to -10. At the very least, it is hoped the neuron

maps one class to a positive value and the other to a negative number. But, should both

classes map to the same value after unsatisfactory neuron training, this unfavorable event

is not insurmountable. Since the data point mappings from all neurons comprise the class

identifier, even if one processing element is poorly trained, the other neurons may

potentially provide for unique class identifiers.

For now, however, assume a pi data point generates 10, while a p2 observation

turns out -10. A class p3 data point will also be cycled through neuron 1, resulting in

another -10, for instance. Consequently, after taking one observation from each class and

mapping them by neuron 1, the following distinction shown as Table III-2 is realized:

CLASS px CLASS p2 CLASS p3

NEURON 1 I 1,2
i

10 -10 -10

Table III-2. Hypothetical Class pi, p2, and p3 Output
from Trained Neuron 1 (Class pi vs Class p2).

In Table ni-2, the second column indicates the two classes used to train the neuron.

Using the same three training data points, output from the remaining two neurons

are also determined. Completing Table ni-2 with these remaining data points shows the

unique identity of each class type.

CLASS pi CLASS p2 CLASS p3

NEURON1 1,2 10 -10 -10

NEURON2 1,3 10 -10 -10

NEURON3 2,3 10 -10 10

Table III-2a. Hypothetical Class pi, p2, and p3 Output
from Trained 3-Class Neural Network.

27

Notice that if neuron 1 had mapped the data points from all classes to 10, for this example

the three classes would still have unique identifiers. In general, however, this is not true.

Neurons 2 and 3 could have been trained such the resulting specifiers did not uniquely

identify each class type.

When determining class specifiers, the network does not process only one point

from each class through the neurons. To obtain a representative template for each class,

the trained neural network processes all training data. This produces a neuron map of all

data points as shown as Figure HI-ll. Calculating the average output from each neuron

for each class determines the three class specific identifiers. These identifiers, n, r2, and

r3 in the three-class case are then saved for later use in classifying observations.

Up to this point the MSNN has processed only training data. Once the network

has learned the characteristics of the input data and can distinguish the separate classes, it

can be used to classify new observations. Shown schematically on Figure HI-12, this

pi P2 p3

ego

a a.

I

1 -
 ——. J

z

-20

n _10 ^ ■ ■ ^^^^^^^^mmm^^mm^mmmimmm

Figure III-ll. Neuron Maps for Hypothetical 3-Class MSNN Typing. Each
plot depicts how a trained neuron maps class data. Read
vertically, the plots identifies the unique class type specifiers
produced by the MSNN.

28

Tj
Yi

;E!
■ 2!

Observation MSNN Decision

Figure 111-12. 3-Class MSNN: Decision-Making.

process comprises the final stage in classifying observations with the MSNN: decision-

making.

The decision phase begins when a sensor or data storage device provides the

tuned MSNN with an observation. Needless to say, if the training data was conditioned

prior to being processed by the MSNN, so must this new observation. According to

Equation 3.14, the MSNN maps this observation producing an output from each neuron.

This observation typing, o, is compared to the stored class specifiers, r,-, via an Euclidean

distance measurement of the general form

d, = (r, - oOT • (r. - o,) for i = 1,2,..., m (3.27)

with the index i indicating a particular class. The minimum distance measure associates

the observation to a particular class.

5. Summary

Summarizing the main MSNN principles, this section has shown:

1. The MSNN projects observations onto the one-dimensional axis that
maximizes separation between the mean value of two class clusters.

29

2. The MSNN processing elements utilize a differentiable activation function
(logsig) that saturates at 1 and 0 for input arguments of positive infinity and
negative infinity, respectively. Optimal performance requires initialization of
the network weight and bias to low values to prevent early network saturation
at these asymptotic values.

3. The MD optimal value of -400 is attained when one class maps to 10 and the
other to -10. The worse case MD value of 0 occurs when the two classes type
to the same output value (both classes mapping to either 10 or -10).

4. The MSNN training follows a steepest descent algorithm that incorporates a
variable learning rate and terminates when ninety-percent of the optimal MD
value is reached. Short of attaining this, MSNN training will cease when the
learning rate falls below a set lower limit or when a maximum number of
training epochs is achieved. If either of these latter cases were to occur, the
weights and bias would be discarded and re-initialized for re-training.

5. Once trained, the MSNN processes the training data to determine specific
class identifiers.

6. When available, a new observation is processed through the trained MSNN.
The projection of this observation by the neural network is compared to the
class identifiers. Using an Euclidean distance measure, the observation is
associated with a class.

Previous trials have demonstrated the classification capabilities of the MSNN

(Duzenli, 1998). As indicated above, this was accomplished by training the neural

network to maximize the separation between the projected means of two class clusters.

Relying on maximal mean separation, however, may not adequately ensure minimal

cluster overlap and, hence satisfactory classification performance. The next section

expounds on the reasons for this behavior and suggests modification to the mean

separator classification scheme.

D. ALTERNATE MEAN SEPARATOR SCHEMES

Repeated here, Figure III-5 illustrates the principle purpose of the MSNN. As

previously explained, the original MSNN algorithm favors case (a) because of the larger

spread between projected cluster means. Yet, examination of this choice demonstrates an

incongruity of the standard MSNN process. Although case (a) does display greater mean

separation, more cluster overlap also occurs with this selection of projection direction.

30

Consequently, an observation belonging to class 7t2 may type to class %\, an inaccurate

selection, because of its position relative to the data cluster. For this reason, case (b)

would be more appropriate. Figure HI-13 illustrates this situation.

Figure III-5 (repeated). MSNN Projection.

Figure 111-13. Anomalous MSNN Classification Situation.

31

Ironically, the effect of such a situation would be more profound when there are

fewer class choices. Recall that the number of class alternatives determines the network

size. Fewer possibilities result in a network consisting of a diminished number of

processing elements. This would be disadvantageous since the effect of the irregularity

shown in Figure HI-13 could not be offset by the increased network flexibility provided

by other neural mappings. Fortunately, the typical classification situation would entail

more than a few possible choices, so the likelihood of this scenario would be minimal.

Moreover, techniques that compensate for data variance can prevent erroneous

classification such as this. Three such methods are explained here. The first adjusts the

MSNN classification scheme by pre-processing the input data. The second alteration

normalizes the class spread by considering projected data variance. Finally, the third

applies a termination parameter defined for the second modification method to the

standard MSNN.

1. Input Data Preconditioning

The first attempt to counter overlapping projections of two different classes

involves normalizing the input data distribution. It was conjectured that a tighter data

spread would effect smaller group projections, thereby facilitating class separation.

• Figure HI-14 demonstrates this hypothesis.

Figure 111-14. Postulated Effect of Data Preconditioning.

32

With this data pre-processing approach, changes to MSNN training and typing

algorithms are not needed. However, in addition to the required preconditioning of

training data and observations, a more sophisticated decision-making scheme would be

implemented.

Prior to submitting training data to the MSNN, the training data is normalized

according to

p. =-* *- + u., (3.28) 1 a. l

i

with p, and p,* respectively being the data values before and after normalization; p,,-

representing a vector of class feature mean values; and c; representing a vector of class

feature standard deviation values. We recognize that this normalization preserves the

mean values by removing the feature averages and then reapplying them after scaling.

With n training data points and m classes, training data normalization would increase the

number of floating point operations by a factor of n*m.

Having been trained with normalized data, for the MSNN to accurately classify

uncategorized data the observations must be similarly adjusted. Therefore, Equation 3.2.8

is also applied to unclassified observations prior to processing by the MSNN. But while

the training data can be associated to a particular class, the nature of the classification

problem dictates that the class of the observation is obviously unknown. Preconditioning

of observations consequently calls for data normalization by the statistical parameters of

all possible classes. Accordingly, the computational requirement has been increased by a

factor of m, the number of classes.

Using the adjusted training data, the MSNN's performance parameters and class

identifiers are determined, as described previously by Figures HI-9 and IE-10. All

equations used during the MSNN training and typing phase apply. The trained network

then transforms the normalized observations into the decision space, where the network

compares each mapped outcome to the identifier of the particular class associated with

that scaled version. That is, the output resulting from an observation scaled by class /

statistics would be compared to the class i type identifier. In the end, the class identifier

33

most similar to its corresponding network output as determined by Euclidean distance is

chosen as the proper category of the observation. Compared to that of the standard

MSNN classifier, each mapping and matching routine entails no additional computations.

True, each observation would undergo m such processes, one for each observation

scaling; but, this factor has already been justified. Overall then, an input preconditioning

approach increases the number of computer operations by a factor of (n+l)*m. For large

training sets and many distinct classes, the added computational load is not trivial.

Yet despite this drawback, the disadvantage caused by a large computational

requirement could be overlooked if actual trials demonstrate a considerable improvement

in network performance. Unfortunately, enhanced robustness may not be demonstrated

when input standard deviations are less than one. Under these conditions, normalization

would make the training data distributions more diffuse and not compact. In addition,

since the normalization is performed in the feature space, the effect of input data

preconditioning may not affect the decision space as positively as Figure IE-14 shows.

The mapping of the normalized data points may cause the projection distributions to be

tighter, more spread out, or unchanged depending on the neural networks initializations

and training trajectory. For these reasons, decision space normalization is considered as a

second method to enhance MSNN performance.

2. Projection Space Normalization

a. Concept

By reducing the feature space noise level, the first modification to the

MSNN classification scheme sought to improve network performance with only minimal

changes to the standard algorithm. Believing input data normalization would result in a

less ambiguous, more tightly clustered class distribution, it was thought projection into

the MSNN decision space would not disrupt this cohesion. Consequently, the resulting

compact clusters would enhance class separation.

Upon reconsideration, however, it was recognized that (1) normalization

may not reduce the variance of the data distribution (e.g., in case in which the feature

standard deviation was already less than one) and (2) since the MSNN transformation is

34

non-linear, projection into the decision space could detrimentally alter the data

distribution within a cluster.

So, instead of trying to obtain an optimal output by pre-processing the

input features, a second variation of the MSNN would instead optimize the output

obtained. By minimizing the variance of the projected data while still maximizing mean

separation, projection cluster overlap would be reduced, thereby lowering the likelihood

of inaccurate classification. As a result of this combination of actions, a large variance

may be tolerable if mean separation is likewise large; while a smaller spread could be

unacceptable for closely spaced class groupings. Figure IE-15 illustrates this notion.

i(b) ;

l> I

A A,
(d)

Figure 111-15. Relative Significance of Mean Separation to Variance.

35

Shown in the decision space, Figure HI-15 illustrates four combinations of

mean separation and variance and the resulting effect on classification capabilities. For

instance, plots (a) and (b) illustrate the obvious conditions with respect to distribution

variance. For a given mean separation, overlap is unlikely with low data spread (plot

(a)); while the converse is true with large variance (plot (b)). Figures HI-15 (c) and (d),

however, emphasize that it is the relative, and not absolute, magnitudes of mean

separation and variance that are significant. In plot (c), large overlap occurs despite low

variance; but in plot IH-15(d), no overlap results regardless of a large variance.

Therefore, the approach does appear to be more logical than either of the two earlier

MSNN models.

Executing this process, however, will involve changes to the MSNN

procedure. The MSNN class typing and decision-making phases depicted in Figures m-

10 and m-12 are still applicable and will not require change; but aspects of the training

phase will need revision. Alterations to the training performance measure and the

training termination criteria are considered.

b. Modified Mean-Difference Projection Index

MSNN training with projection space normalization does not require

modification to the network training procedure. The processing element and the data

flow path as depicted earlier in Figures ITI-7 and HI-9 remain unchanged. The

performance measure specified by Equation 3.15, however, will be modified. Taking

into consideration the projection space variance of the two transformed data distributions,

the new mean-difference projection index (MD2) is defined as

MS _ [E{(20-O(w.Pl+b)-10)-(20-^(w.p2+b)-10)}]2

var(20 • <5(w. pl + b) -10) + var(20 • 0(w. p2 + b) -10)

= [E{g>(w.p,+b)-<E>(w.p2+b)}]2

var(<&(w. pj + b)) + var(3>(w. p2 + b))'

where 0 again represents the logsig activation function and var symbolizes the statistical

variance.

36

Because of this new projection index, the gradient portion of the mean-

difference learning rate must be recomputed. Taking the partial derivatives of MD2, as

specified by Equations 3.23 and 3.24, yields

^ei = 2K[K(E{a|^+ßi)-E{a}.EA-E{ß}.E#)) -E{|^-|£-}] (3.30)
dw dw dw dw dw dw dw

^ = 2K[K(E(a^+P^}-E(a).EÄ-E{ß).E(|))-E(|-f(], (3.31)
3b db db db db do do

with the parameters K, a, and ß defined as

 E{a-ß)
K_E{a2+ß2}-E2{a}-E2{ß}

a = <D(w. pi + b), -^- = O' (w. pi + b) • pi, -^ = O' (w. pi + b)
dw db

ß = 0(w.p2 + b),-^ = 0'(w.p2 + b).p2,-f- = <D*(w.p2 + b).
dw db

As before, the logsig activation function, <J>, and its derivative are defined by

4> = logsig(n) = 3> = logsig'(n) = —— TTö"- 5 ö l + exp(-n) exp(n)(l + exp(-n))2

Note that MD2, a, ß and their derivatives with respect to the neural network bias are all

scalar quantities. The derivatives of these parameters with respect to the weight vector

are, on the other hand, vectors. This agrees with the MSNN learning rule equations,

Equations 3.23 and 3.24.

With the projection index now expressed as a ratio of mean separation to

sum of projection variance, the range is no longer constrained to [-400,0]. In fact, in the

optimal situation, the sum of variance is zero and therefore MD2 is undefined.

Conceptually, a small variance and the resulting large magnitude for MD2 concurs with

the best case situation described by the numerator of the projection index, that of a large

mean difference. But, an infinitesimally small denominator causes computational

difficulties. To preclude this, the denominator of MD2 and its derivatives are limited to a

minimum value of 10"10.

37

c. Modified Termination Requirement

The training phase of the standard MSNN terminated either on maximum

epoch limit, minimum learning rate, or optimal performance measure. The first two

criteria are still valid within the framework of the projection space variance modification;

however, the latter case no longer has any meaning. In the best case scenario, the

performance measure is unbounded and thus cannot be used to end training. Multiplying

the MD2 projection index by its denominator (i.e., the sum of projection variances) may

allow for implementation of a termination criteria; but, this termination requirement

would amount to only the projection space mean separation, thereby ignoring the

relevance of data spread. Because of this, a new termination index that measured the

ratio of data variance to mean separation was defined.

Consider the projection space data distributions shown on Figure HI-16.

Improving classification performance relies on maximizing the separation, AV, between

the points Xi and x2 relative to the mean separation, AM. Based on an error tolerance,

these points are found using statistical error function tables, assuming both projected data

sets are normally distributed. The termination parameter, the variance-mean ratio

(VMR), is then defined as AV/AM. For a given mean separation, imposing a threshold on

this ratio specifies the minimum spread value AV and consequently the allowed variance

of the projected class distributions. A more rigorous derivation of this parameter follows.

VMR = AV/AM

CLASS ji! CLASS %2

Xl x2

Figure 111-16. Variance-Mean Ratio.

38

The primary assumption needed for the derivation of the VMR criterion is

that, in the decision domain, the projected data is normally distributed. By making this

claim, error function tables and known characteristics of normal distributions can be used

to analytically derive VMR. But, to verify this supposition requires examining the

attributes of the projected data. Figures BI-17 through III-20 illustrate the transformed

data distributions for each class of a two-class classification problem. Plots (a) and (b)

display the normality plots of the resulting distributions. A non-vertical, linear plot of '+'

marks superimposed on the dashed line denotes a Gaussian distributed data set. In

contrast, a curvature in the plotting of these marks indicates a departure from normality.

Plots (c) and (d) are the corresponding histograms.

In the optimal case (Figure HI-17), the data is far from Gaussian. This,

however, is desired. Instead of the expected bell-shaped data distribution characteristic

of a Gaussian curve, the data shown in Figure HI-17 shows one vertical bar. Recall that

when optimally trained, the MSNN processing element will precisely map one class to 10

and the other -10, as shown. As will be defined shortly, VMR for this case is 1 and the

assumption of normality is not required.

In the least desired situation depicted by Figure III-18, the data is again far

from Gaussian. Although two vertical bars are now shown for each class, indicating poor

data classification, all mappings are precisely to one of the extreme values.

Consequently, mapping into the projection space did not result in data overlap and the

assumption of normality is again not required.

In the intermediate cases shown on Figures HI-19 and 111-20, it is apparent

that the transformation into the decision space was not precise. As a result data overlap

may occur. In three of the four cases shown (both classes of Figures IE-19 and class 7t2

of Figure m-20) the distributions are nearly normal, so the initial assumption holds. For

class 7ti of Figure m-20, however, the normality plot indicates that the tail of the

distribution extends further out than that of a normally distributed data set. This implies a

greater amount of data overlap than assumed by a Gaussian distribution. Fortunately, this

situation is atypical. Because of the logsig activation function, the input data tends to

39

Normal Probability Plot

098
0.95
090

».075

5 OSO

 ! + I

 • + :

Normal Probability Plot

0.999
0.997

 ;
0.99
0.98 : .""." ■.■.■.■;■;.".:." ' /.v.././. ■'■•■; v..v.,;..:
0.95
0.90

0.75

0.50 ■: -

0.25

0.10
0.05
0.02
0.01
0.0O3
0.001

+

(a) (b)
1100

1O0O

(c) (d)

Figure 111-17. Example of Projected Data Distribution, (a) Class 71!
Normality Plot (b) Class 7t2 Normality Plot (c) Class %
Histogram (d) Class 7t2 Histogram.

0.999
0597

0-S 0.98
0.95
0.90

fc0.75

1 oso
£ 0.25

Normal Probability Ploi

0.999
0.997
0.99
098
0.95
0.90

>.0.75

1 o.so
£ 0.2S

Normal Probability Plot

'. '_ ""'[S.1 J--■-•■:";:rrr '-

...H.'.i

 ~.~:„>i~-^~r. Hr: ---

0.10
0.05
0JD2
0.01

0.003
0.001 t ; : i

0.10
0.05
0.02
0.01
0.003
0.001

0-505
Data

10 10 -5 0
Data

5 10

(a) (b)

500 500

400 400

300 300

200 200

too 100

-10 -5 0 5

(c)
1 o -irj -5 0

(d)
5 10

Figure 111-18. Example of Projected Data Distribution, (a) Class 7ti
Normality Plot (b) Class 7t2 Normality Plot (c) Class 7t!
Histogram (d) Class 7t2 Histogram.

40

Normal Probability Plot Normal Probability Plot

(a)

Figure 111-19. Example of Projected Data Distribution. (a)Class7ii
Normality Plot (b) Class 7t2 Normality Plot (c) Class %i
Histogram (d) Class n2 Histogram.

Normal Probability Plot Normal Probability Plot

0.997 ■*■*■■"

-Jf- ■ ■ ■■ •■
0.36
0.95 w~ ■■

0.90 '. -;'
„075

 ;■■■ -'■■■

3 050; - :■

s
°- 0.25

 ': ■ ■ '

0.10
0.05
0.03 •s-'Zj— '-
0.033 ■■■■ ■■ -

0.031
+ , '■" " V

-202*6

(b)

Figure 111-20. Example of Projected Data Distribution, (a) Class Tti
Normality Plot (b) Class it2 Normality Plot (c) Class %i
Histogram (d) Class n2 Histogram.

41

map to one of the optimum values (i.e., 10 or -10). Yet, to compensate for this aberrant

case, stringent requirements will be placed on VMR.

Accepting the assumption of a normally distributed data projection, the

derivation for VMR is as follows. For the two classes shown in Figure HI-16, the

projection of class TCI has a mean \xx and standard deviation o\. Correspondingly, the

projection of class 7c2 has a mean u2 and standard deviation o2. Unlike in the feature

space, the class means and standard deviations are scalar quantities owing to the one-

dimensional projection by the neural network's linear and non-linear mappings.

Taken from error function tables, the error tolerance specifies the location

of xi and x2 on the projection axis. For instance, with an allowable error set at 0.5%, the

threshold points for a zero-mean, unit-variance, normally distributed class are ±2.52 units

from the mean. That is, 0.5% of the distribution reside in the tails beyond these locations.

Applying the known statistical parameters of the actual classes, these positions are found

tobe

Xa = Ua + 2.52 • o-a, (3.32)

Xb = Ub + 2.52 • Ob. (3.33)

In Equations 3.32 and 3.33, the subscripts a and b are used to derive the

formulae without having knowledge of the actual orientation of classes m and %2. Li the

general sense, subscript b refers to the class with the more positive mean. So, in terms of

Figure HI-16, xa corresponds to xi; xb to x2. Taking the difference of xb and xa yields AV:

A V = Xb - Xa

= (Ub - 2.52 • Ob) - (Ua + 2.52 • Oa)

= (Ub-Ua)-2.52(Ob + 0-a). (3.34)

Using Equation 3.34, the variance-mean ratio (VMR) can be expressed as

VMR - AV - (M»-M«)-2.52(ob + q.)
AM Ub - Ua

, 2.52(Ob + Oa)
= 1 -. (3.35)

Ub-Ua

42

To account for cases in which improper class assignment results in the mean of class a

being more positive than the mean of class b, an absolute value is introduced to

emphasize the magnitude and not the sign of the difference in means. Equation 3.35

therefore becomes

VMR=l-2f(gb+,ga). (3.36)
|Ub-Ua|

If Equation 3.36 had been incorrectly derived, the second term would have

been added instead of subtracted.

Equation 3.36 establishes how tightly clustered the class projection into

the decision space must be. Recognizing that a VMR of zero would only incur the

acceptable error limit (here, 0.5% error) for a Gaussian distributed data sample, a VMR

greater than zero imparts an even higher requirement on projected class variance. This

compensates for any situations in which the data distribution is not Gaussian and

institutes the precision required of the neural network training. Caution must be observed

for negative VMR values. This implies a mean separation that is smaller than the sum of

variances and hence, a large degree of overlap.

During actual implementation, VMR terminated the training cycle only

after an improvement in MD2 (i.e., a more negative value). In retrospect, however,

checking MD2 was not required. Since this modification considers both mean separation

and projection variance, an increase in mean-difference (MD2) does not necessarily

indicate worsening conditions, as it does for the mean-difference (MD) of the standard

MSNN. Consequently, network training should have been stopped on VMR threshold,

maximum epoch limit, or minimum learning rate, without consideration for the MD2

projection index.

3. Further Implementation of the Variance-Mean Ratio

Perhaps the strength of projection space normalization modification does not lie

in the upgraded performance parameter, MD2, as originally intended, but rather in the

termination parameter, VMR. Because of this possibility, the third MSNN variation used

43

VMR, vice the empirically determined ninety-percent of optimal MD, as the training

termination requirement for the original MSNN method.

E. SUMMARY

Chapter m discussed several techniques used to classify observations. These

methods include a parametric statistical classifier and five neural network architectures.

The statistical classifier of interest was a quadratic classifier. The decision rule for this

method was derived and its applicability to normally distributed data, highlighted.

The first neural network examined was the single layer perceptron. This neuro-

classifier used linear separation boundaries to partition classes into their own separate

spaces. The primary difficulty encountered with the perceptron networks was the

inability to use optimization techniques to guide the network's training. Instead a simple,

albeit powerful under certain situations, rule governs perceptron learning.

Next, the Mean Separator Neural Network (MSNN) first introduced by Duzenli

and Fargues was explained. This network architecture and variations on its design are the

principle focus of this study. Classification with MSNN are performed by projecting data

onto an one-dimensional axis. The mean-difference (MD) performance parameter

maximizes the separation between class mean values, enabling classification of

observations to the proper category by using a distance metric.

Improved performance was sought by modifying the MSNN to consider the data

variance. One alternative mean-separator normalized the input space in an attempt to

produce tight class clusters. A second, more promising, approach normalized the

projection space using an upgraded performance parameter, MD2, and a new training

termination criteria, VMR. Together, these metrics maximized the projected mean

separation while also tightening the decision space data spread, reducing data cluster

overlap. Hypothesizing, however, that the primary driver to restricting this overlap was

the termination parameter, VMR, and not the modified performance parameter, MD2,

classification using the standard MSNN projection index, MD, coupled with the new

termination criteria was considered as a third modification to the MSNN. In the

following chapters, these MSNN variants - MSNN with preconditioned input space,

44

MSNN with normalized projection space, and MSNN with VMR termination - will be

referred to as MSNN Mod 1, MSNN Mod 2, and MSNN Mod 3, respectively.

Chapter IV will next discuss the preliminary investigations into the effectiveness

of the individual classification tools.

45

THIS PAGE INTENTIONALLY LEFT BLANK

46

IV. VERIFICATION OF CLASSIFIER PERFORMANCE

Chapter HI introduced and explained the implementation of the different

classifiers considered in this study; one parametric classifier and five neural networks.

This chapter assesses these methods through simulations. MATLAB program codes used

during these trials are provided in Appendix C.

A. SIMULATION PROTOCOL

A three-class separation problem was considered to test the performance of the

subject classification methods. Working in three-, ten-, and fifty-dimension input spaces,

the classifiers used 100 training objects per class to model the data and then used this

representation to categorize 1000 trial observations per class. Performing the tests under

various noise conditions emphasized the robustness of the classification methods.

Specifically, the signal-to-noise ratios (SNRs) simulated were ±20 dB, ±15 dB, ±10 dB,

±5 dB, and 0 dB. Absent from this list is the no-noise case since generation of zero-

variance data would identify only one point for each class.

Constructing the training and testing data objects required determining class

statistics. The mean values for each class feature were randomly selected from a uniform

distribution. To focus the initial neural network activity in the logsig dynamic range and

thereby prevent neural network saturation, these mean values were constrained to [-1,1].

During real-time analysis, signal power is normalized. Hence, the normalized sum of n

feature variances gives signal SNR, as shown by Equation 4.1:

SNR = lOlogio
y-*j

(4.1)

Consequently, when SNR is known Equation 4.1 can be used to randomly select each

feature variance from a uniform distribution.

Having randomly specified the mean and established the variance values for each

class, Gaussian distributed features were simulated to form the 300 training and 3000

testing observations (100 and 1000 for each class) required per trial. Examples of a

47

three-class, three-feature classification problem with low and high noise conditions are

illustrated in Figure IV-1 and IV-2. The two-dimensional plots in each figure depict data

projection onto two of the three dimensions. As expected, decreased SNR resulted in

increased data overlap, thereby suggesting increased classification difficulty.

Feature 2 Feature 1

Feature 1 Feature 1
o 2

Feature 2

Figure IV-1. Example of 3-Feature Data for Classification (low noise).

Feature 2 Feature 1

-2 0 2

Feature 1
-2 0 2

Feature 1
o 2

Feature 2

Figure IV-2. Example of 3-Feature Data for Classification (high noise).

48

Lastly, after creating the artificial feature vector, the data was normalized for

MSNN Mod 1 implementation (as specified by Equation 3.28) and the training data

covariance matrix was calculated for use by the statistical classifier. The results obtained

with this parametric classifier are considered next.

B. INDIVIDUAL CLASSIFIER PERFORMANCE

1. Statistical Classifier

Chapter IE defined the quadratic classifier decision rule as

di(x) = ln|2:i| + (x-jii)
T2::1(x-fii)-21nPi. (3.8)

This classifier categorized testing objects by selecting the class that resulted in the lowest

value for the distance quantifier. The observations x, covariance matrix 2, and mean

vector u, were obtained as earlier explained. The a priori probability, Pi, was determined

by assuming equal likelihood for all class types; P = 1/m, with m being the number of

classes.

Recall a crucial assumption made during the derivation of Equation 3.8 required

that the observations x form a normally distributed data set. The trials met this

prerequisite by using a normally distributed random generator to produce the artificial

signal features. Since these random variables were created without interdependence and

are therefore uncorrelated, the joint distribution of the random variables is a product of

the individual distributions. Hence, the observations are multivariate normal, indicating

the quadratic classifier can be used.

Convinced that the quadratic classifier can be appropriately applied, 3000 test

objects per trial were classified. For all combinations of the nine SNR levels and three

input space sizes, five trials were conducted. This amounts to the classification of

405,000 test objects. For convenience, the simulation results obtained for this and all

other classifiers are collected in Appendix B. Tables B-l through B-3 contain

classification confusion matrices of the statistical classifier trials and Figure B-l plots the

performance indices indicated by these tables. These results indicate that the quadratic

classifier performed remarkably well under the simulated conditions. As expected,

49

misclassification decreased with increased SNR and feature space size. A comparison of

all classification techniques will be discussed later.

2. Perceptron

The quadratic classifier models each class based on the statistical parameters of

the training data. The neural network classifiers, however, use a non-parametric learning

algorithm to train the network for class recognition. That is, the actual data, and not its

distribution information, are used to train the network to differentiate the class.

One consequence of neuro-classifier training, however, is the absence of a unique

solution in many circumstances. For instance, in the case of the perceptron neural

network, different decision boundaries arise dependent on the initial weight and bias

values. Recall, perceptron training was governed by the learning rules defined by

Equations 3.11 and 3.12:

wnew = wo.d +e.p
T = w

old +(t-a).pT (3.11)

bnew =bold +e==boId +(t_a) (3 12)

Since the update terms in Equations 3.11 and 3.12 are indirectly affected by the old

weight and bias values through a, perturbations in the initial weight and bias settings can

alter the final solution. In addition, there is no way to tell if an alternate weight and bias

will improve network training; there is no method to determine the best starting point for

perceptron training. To account for this uncertainty, the perceptron neural network was

trained five times for each set of training data. For each network re-training, random

generation ensured different weight and bias initializations were used. This process was

then repeated with five different training data sets to test network durability.

Consequently, overall the perceptron was trained twenty-five times for each noise and

input space condition to provide for a more general understanding of its capabilities.

After each network training, the perceptron classified 1000 objects for each class

per trial; in excess of two million objects over all simulations. Tables B-4 through B-6

and Figure B-2 summarize the results of these trials. However, not all test data was typed

to one of the possible classes. As previously explained, this peculiarity arises when the

50

number of class possibilities (2** for a network of \i processing elements) exceeds the

number of actual classes. Table IV-1 indicates the percentage of such occurrences for

each SNR level and input feature size.

SNR
(dB)

3 FEATURES
10

FEATURES
50

FEATURES

20 0.3 0.0 0.0

15 0.7 0.1 0.0

10 0.8 0.1 0.1

5 3.6 0.9 0.1

0 4.8 3.1 0.2

-5 12.5 9.9 3.0

-10 14.6 13.6 5.1

-15 17.7 16.8 8.0

-20 14.6 19.1 15.7

Table IV-1. Observed Percentage of Perceptron Non-Type Classification.

Tables B-4 through B-6 and IV-1 indicate acceptable results at positive SNR levels, but

severely degraded perceptron performance with increased non-type classifications in

noisy environments. In large part this is attributable to the linear decision boundaries

used to separate the different classes. As SNR decreases, resulting in increased data

encroachment into neighboring partitions and ultimately more cluster overlap, the

perceptron's linear separators cannot adequately maintain class division. Consequently,

classification performance suffered.

3. MSNN Methods

The quadratic classifier and perceptron served as benchmarks for measuring

MSNN performance. For the same reason that the perceptron was subjected to multiple

training cycles, each MSNN variation was trained with five different weight and bias

51

initializations for each set of 100 training observations per class for a three-class setup.

To reiterate, the MSNN alternatives were

1. Standard MSNN

2. MSNN Mod 1: MSNN with feature space preconditioning

3. MSNN Mod 2: MSNN with projection space normalization

4. MSNN Mod 3: Standard MSNN with VMR termination

For the modifications that utilized the VMR termination parameter (variations 3 and 4),

AV was based on 0.5% of the observations residing in the fringes of the data distribution

and the VMR threshold was set at 0.90. With these stringent criteria, minimal data

overlap is expected when network training secures on VMR. Unfortunately, a post-

simulation record review revealed that this was not the case as network training often

terminated on maximum epoch limit.

Once trained, the tuned networks classified 3000 test objects per run. As

previously stated, this training/testing scheme was repeated with five different data sets to

quantify network robustness. Simulation results are presented on Tables B-7 through B-9

and on Figure B-3 for the standard MSNN; on Tables B-10 through B-12 and Figure B-4

for MSNN Mod 1; on Tables B-13 through B-15 and Figure B-5 for MSNN Mod 2; and

on Tables B-16 through B-18 and Figure B-6 for MSNN Mod 3. Not surprisingly, neural

network performance deteriorated with increased noise levels and decreased feature space

size.

In addition to these results, it is also instructive to note some characteristics of the

MSNN implementation not pertinent to either the statistical classifier or perceptron

neural network. For instance, plotting the surface of the mean-difference parameter, MD,

over a range of weight and bias values provides insight into the behavior of the network

training trajectory. Unfortunately, plotting limitations prevent graphical representations

of the MD projection index and every elements of the simulated feature space since this

would require hyperspace imaging. At most only two degrees of freedom could be used

52

to form the three-dimensional image of a particular projection index surface. Therefore,

a one-dimensional classification problem was analyzed.

Figures IV-3 and IV-4 illustrate a one-dimensional classification problem and the

neuron map for its sole standard MSNN processing element. In particular, Figure IV-4

confirms successful network training, as the test points for each class map to the same

unique specifier and provide for maximum mean separation.

_Classjt2.
H^-0.6 o3 = Q.04

ClassjCi-
H = 0.0 a2 = 0.04

 ■]. I|I|»HNI* «Miiilm *t

Figure IV-3. Example of 1-Feature Data for Classification.

Class 7li
Specifier: -10

Class %i
Specifier: 10

lOO

Test Point

Figure IV-4. MSNN Neuron Map of 1-Feature Data.

Since the feature space is comprised of only one element, plotting the projection

index surface can be achieved by considering a scalar weight and bias. This is shown in

Figure IV-5. Here the upper two graphs display the MD surface characteristics in the

53

vicinity of the trained solution and representative contours; the lower two, a more global

depiction over a wider range of weight and bias values.

-400
10

Bias -10 -500
0
Weight -400 -200 0 200 400

Weight

-200.

-400
5000

5000

5000

Bias -5000 -5000 Weight

MSNN Solution: MD =-400
w = -436 b = -5.0

-5000
-5000 0

Weight

5000

Figure IV-5. MSNN Local and Global Surface and Contour Plots.

The MSNN solution and corresponding mean-difference rating of -400 confirm

the successful network training suggested by the network's neuron map. In addition, the

regularity of the MD surface implies that network resolution to the final weight and bias

values was unencumbered by any local minima obstacles.

Recall that a mean-difference of zero is the least desired case. Figure IV-5 shows

this occurring for a weight of zero regardless of bias, and for large magnitude weight and

bias values. This latter case corresponds to processing element saturation. Interestingly,

54

Figure IV-5 also suggests that in this trial the bias was not a vital contributor to obtaining

the optimal MD value. Both the local and global plots reveal that a MD value of -400

can be attained with a relatively small bias. This, however, is primarily a function of the

class data and not a general trait of mean separator transformation (Equation 3.14). In all

one-dimensional cases examined, the class means were bipolar. That is, the means of the

data distributions were created such that they had opposite sign. Consequently, the

inherent data distribution bias (i.e., combined mean of the two classes) was near zero,

indicating little need to impose an external bias to maximize mean separation.

Yet, in general, examination of the mean separator transformation suggests that

the role of the bias is as a linear translator of the activation function output. The bias

merely shifts the characteristic logsig plot horizontally. Consequently, bias can be

disregarded and in its place, a second weight component considered. By considering this

second weight feature, greater insight into the presence or absence of local minima and

subsequently their effect on neural network performance can possibly be gained. Figures

rV-6 (low noise) and IV-7 (high noise) illustrate such a two-dimensional problem. The

neuron maps (Figures IV-8 through IV-22, even) and mean-difference surface and

contour plots (Figures IV-9 through IV-23, odd) for the four MSNN variants follow.

From these figures, it is worth noting the consistency (or lack thereof) in the neuron maps

and any eccentricity in the shape of the surface plots.

0.6

0.4

0.2

-0.2

-0.4

-0.6

-0.8
-1

-H-
. =N=__i

H = p).75;0.16] t + ^"V* !+
-02-={8,923;OiO363-L

"SFT-

+'+ +H- + «-
+-Ht-t- "tu '

. _i

■*- -*--+-

.Llfl
i Class 7t2

[u = [:0.75;-0.16]

.i i-

I L.

;<?= [0.021^0.039]
* L .

-0.5 0.5 1.5

Figure IV-6. Example of 2-Feature Data for Classification (low noise).

55

2.5

2

1.5

1

0.5

0

-0.5

-1

-1.5

-2

-2.5
-2

i "Class 7i2

+t={-0i95;-0.2k>-

-j 1 i

-J±-__ ' '

*- . I
 r-f-- -*—i- '

■4-1. ■*■**" -H*-

--F* - " T
+"

 1

, i* -H- U+.-+- jh '

4H- *l- ±1+ ++ I

+ --#-
■*■

-+4>-*--j- *---■*=■
^ ■**- t*. I

■L+-- 1 -** *-xl -*-a*- - -, 1 -

 +^ 1

 ' _ _ _ ' -fc _' J

. _' L-k. 1-

Class7|t

-1.5 -1 -0.5 0.5 1.5 2.5

Figure IV-7. Example of 2-Feature Data for Classification (high noise).

For instance, Figures IV-10 and IV-18 suggest the futility of data preconditioning

prior to network training and classification. MSNN Mod 1 consistently produced the

least consistent neuron mappings and often the smallest mean spread. Further confirmed

by low mean-difference indices of -134 and -174 respectively shown on Figures IV-11

and IV-19, the resulting sub-optimal mean separation led to poor classification

performance.

On the other hand, the neuron maps and surface/contour plots for the remaining

three MSNN variants indicate optimal network training achieved with the high SNR

condition. Figures IV-8, IV-12, and IV-14 depict the maximal separation between class

means and Figures IV-9, IV-13, and IV-15 report the optimal value for the mean-

difference projection index. For the standard MSNN and MSNN Mod 3, this MD value

is given by Equation 3.15; for MSNN Mod 2, MD2 is calculated using Equation 3.29.

Moreover, the MSNN Mod 2 mean-difference value of -1010 implies a sum of projection

space variances much less than 10"7, suggesting that transformation into the decision

domain resulted in a high degree of precision and essentially no data overlap.

Graphically, this accounts for the vertical slope found on the performance surface of

Figure IV-13, as opposed to the more gradual descents seen on other plots. Such a

favorable mapping greatly simplifies the classification task.

56

Class Tti
Specifier: -10

Class 7i2

Specifier: 10

Test Point

Figure IV-8. MSNN Neuron Map of 2-Feature Data (low noise).

9-200

-400
1000

Weight 1 .1000 -200 Weight 2 500 0 500
Weight 2

□ -200

-400
5000

5000

5000
0 -5000

Weight 1 -5000 -5000 Weight 2 -5000

MSNN Solution: MD = -400
w = [-688;-148]b = [-0.36]

5000

Figure IV-9. MSNN Local and Global Surface and Contour Plots (low noise).

57

Class Tfe Specifier:

Class 7ii Specifier: -6.6

Test Point

Figure IV-10. MSNN Mod 1 Neuron Map of 2-Feature Data (low noise).

-200-

-400
5000

1000

-1000
2000

Weight 1 -5000 -2000 Weight 2 -2000 0 2000
Weight 2

-200-

-400
5000

5000

5000
0 -5000

Weight 1 -5000 -5000 Weight 2 -5000

MSNN Solution: MD = -134
w = [-3873;-1711]b = [-271]

500C

Figure IV-11. MSNN Mod 1 Local and Global Surface and Contour Plots (low noise).

58

io

s

Class 7t> Specifier: 10

o

-5

(
Class 7ii Specifier: -10 ;

j 100

Test Point
200

Figure IV-12. MSNN Mod 2 Neuron Map of 2-Feature Data (low noise).

x10

Weight 1 -5000 -2000 Weight 2

x109

-2000-1000 0 1000 2000
Weight 2

5000

Weight 1 -5000 -5000 Weight 2

MSNN Solution: MD2 = -1010

w = t-2329;-905]b = [-0.11]

5000

Figure IV-13. MSNN Mod 2 Local and Global Surface and Contour Plots (low noise).

59

10

5

Class 7i7 Specifier: 10

O -

-5 -

(
Class Tii Specifier: -10 ;

J 100

Test Point
200

Figure IV-14. MSNN Mod 3 Neuron Map of 2-Feature Data (low noise).

-200

-400
1000

100

o>

i
200 -100

Weight 1 -1000 -200 Weight 2 -500 0 500
Weight 2

9 -200

-400
5000

5000

5000

Weight 1 -5000 -5000 Weight 2

MSNN Solution: MD = -400
w = [-688;-148]b = [-0.36]

5000

Figure IV-15. MSNN Mod 3 Local and Global Surface and Contour Plots flow noise).

60

 ____ —-—i

G

O

-5

Class 7ti
Specifier: 9.8

CJ ISS %i
Si ecifier: -9.2

1Ü

100
Test Point

Figure IV-16. MSNN Neuron Map of 2-Feature Data (high noise).

1000

200----"

x 104 J
Weight 1

2000
-1000

-2 -2000 Weight 2 -1 -0.5 0 0.5 1
Weight 2 x 1Q4

5000

-400
5000

5000

Weight 1 -5000 -5000 Weight 2

MSNN Solution: MD = -361
w = [10900;1670] b = [206]

5000

Figure IV-17. MSNN Local and Global Surface and Contour Plots (high noise).

61

uuu
Class 7ii Specifier: -5.8

Class 7t2 Specifier: 7.4

100
Test Point

Figure IV-18. MSNN Mod 1 Neuron Map of 2-Feature Data (high noise).

-400
5000

Weight 1 -5000 -2000 Weight 2 -2000 0 2000
Weight 2

-200

-400
5000

5000

o> 0

1
5000

-5000

^
ill

Piy
Weight 1 -5000 -5000 Weight 2 -5000

MSNN Solution: MD = -174
w = [-3142;-1428]b = [-362]

0

Weight 2

5000

Figure IV-19. MSNN Mod 1 Local and Global Surface and Contour Plots (high noise).

62

Class 7ii Specifier: 9.2

LJ IJL^JLi^A_^jJ^
Class 712 Specifier: -9.3

Test Point

Figure IV-20. MSNN Mod 2 Neuron Map of 2-Feature Data (high noise).

-20 -10

10
0 -5

Weight 2

5000

-5 0 5
Weight 2

-40
5000

5000

Weight 1 -5000 -5000 Weight 2

MSNN Solution: MD2 = -36
w = [7.13;2.32]b = [-2.73]

-5000
5000

Figure IV-21. MSNN Mod 2 Local and Global Surface and Contour Plots (high noise).

63

10

s

o

-s

-10

(

Class 7ii SDecifier: 9.8

Class 7i2 Specifier: -9.2
J 100 200

Test Point

Figure IV-22. MSNN Mod 3 Neuron Map of 2-Feature Data (high noise).

1000

2000
-1000

-2 -2000 Weight 2 -1 -0.5 0 0.5 1
Weight 2 ,n4

" x 10
5000

-400
5000

5000

Weight 1 -5000 -5000 Weight 2

MSNN Solution: MD = -361
w = [10900;1670]b = [206]

-5000 5000

Figure IV-23. MSNN Mod 3Local and Global Surface and Contour Plots (high noise).

64

The superior performance of these MSNN variants relative to the MSNN Mod 1

approach is also displayed on the figures representative of high noise conditions.

Moreover, these plots illustrate the effect of added noise. The wide range global plots

indicate that by increasing the noise level, the area of optimal mean-difference decreases.

For instance, consider the results of MSNN Mod 2 shown on Figures IV-13 and IV-21.

Whereas the optimal region envelops a large area in the low noise case; with increased

noise corruption, maximal MD2 can only be attained through a narrow selection of weight

values. Since fewer weight combinations will result in the optimal MD2 value, the

likelihood of attaining an acceptably trained network is lower. Consequently, more

misclassifications are probable.

Also notice that the low SNR plots indicate a greater directionality towards a

particular weight component, reminiscent of what was observed in the one-dimensional

case. But, unlike the earlier observation, this is not a result of the simulation protocol

(i.e., creating intrinsically low bias conditions). For the two-dimensional case, this

directionality results from the inner product of the weight vector and actual data used,

and therefore will change from simulation to simulation.

Curiously, the results obtained with the MSNN Mod 3 were exactly the same as

those achieved by the standard MSNN. Recall the principle advantage of using the VMR

termination criteria is that this parameter places a requirement on projection data variance

in addition to projection mean spread. By considering both parameters, data overlap is

minimized. Unfortunately, network training often did not secure on reaching the VMR

threshold. Instead, the MSNN Mod 3 variant terminated the training phase when the

number of training epochs exceeded the established limit. Because of this, future MSNN

studies should increase the epoch limit and reformulate the network guidance (i.e., the

learning rate rules) to take advantage of the VMR criterion while still allowing for a

dynamic learning capability.

Analysis thus far has focused on the performance of the individual classification

methods. The next section compares the six classification tools.

65

C. CLASSIFIER COMPARISON

Analysis of the classification techniques provided initial insight into their

capabilities. The most revealing fact learned, however, does not concern the benefits

gained by a specific method, but instead speaks to the ineffectiveness of one under the

prescribed test conditions. The inability of MSNN Mod 1 (preconditioned input data) to

satisfactorily classify data objects was most notable on neuron mapping plots of the input

observations into the decision space (Figures IV-10 and TV-18). These figures showed

imprecise projection of the input data.

The results of each classifier must be compared to determine if the neural network

modification improved classification performance. Unfortunately, Figures IV-8 through

IV-23 and Appendix B do not facilitate performance comparison of the six classification

techniques. This contrast, however, can be gleaned by fusing the information found on

Figures B-l through B-6 into three plots differentiated by input space size, shown as

Figures IV-24 through TV-26. For the purposes of this evaluation, reliable classification

capabilities are demonstrated at each SNR level if the average correct classification

percentage exceeds ninety-percent.

Using this standard, the statistical classifier achieved the most accurate level of

performance. For a small feature space, the parametric classifier attained over ninety-

percent accuracy at a SNR of 7 dB. As input space dimensionality increased to fifty

features, this performance level was maintained for all SNRs. This high classification

success can be attributed to the classifier's ability to minimize classification error, as

alluded to in Chapter m. Since the artificial features were normally distributed and

independently created, the data set was well conditioned, allowing for optimum

performance of the statistical classifier.

For the MSNN variants, Figures IV-24 through IV-26 do not clearly indicate

which technique performs best. The greatest distinction is discernable in the three-

feature input space. As shown on Figure IV-24, there is little difference between the

performance of the standard MSNN and MSNN Mod 2, with each maintaining the

ninety-percent accuracy level down to 5 and 6 dB, respectively. MSNN Mod 3 met this

66

limit at 11 dB and then paralleled the standard MSNN and MSNN Mod 2 algorithms with

a slight offset. Not unexpectedly, MSNN Mod 1 proved to be the least successful

technique, with all SNRs resulting in sub-ninety-percent accuracy.

o
SNR (dB)

Figure IV-24. Performance Comparison: Simulated Features (3).

o

Figure IV-25. Performance Comparison: Simulated Features (10).

■■ — .■■ Statistical Classifier
—K-- Perceptron
■ i^^ MSNN
"E3H- MSNN Mod 1
—*^*- MSNN Mod 2 _<==>_ MSNN Mod 3

o
SMR (dE

Figure IV-26. Performance Comparison: Simulated Features (50).

67

In general, as the number of input features increased, all classifiers showed

greater classification success. Moreover, MSNN Mod 1 surprisingly showed improved

performance equal to the standard MSNN and MSNN Mod 2 methods in the ten- and

fifty-dimension feature spaces. With these feature space dimensionalities, ninety-percent

classification accuracy was sustained down to 0 dB and -7 dB, respectively, for the three

MSNN variants listed.

Curiously, the MSNN Mod 3 variant demonstrated the least amount of

improvement. For instance, Figure F/-26 indicates twenty-percent disparity between this

hybrid method and the standard MSNN at SNRs of -5 dB and -10 dB. This difference

and lack of significant improvement can again be attributed to MSNN Mod 3 terminating

its training on maximum epoch limit instead of on VMR threshold. Unlike the standard

MSNN that re-initializes its weights and bias and retrains the network when network

learning ceases prior to satisfactorily training, MSNN Mod 3 implements the weight and

bias it had attained when a termination parameter setpoint is reached. Since acceptable

network training may not have been achieved, poor classification performance would

results.

With an input space dimensionality of three, the perceptron performed on par with

the MSNN Mod 3 variant to 15 dB. Below this SNR level, perceptron performance

decline can be accredited to greater data noise; the resulting increased data overlap

limiting the network's ability to establish linear class boundaries.

D. SUMMARY

Chapter IV utilized simulated data consisting of artificial feature elements to

measure classification method performance. Considering varying noise and input space

size, data sets of 300 training and 3000 testing objects were created. For the statistical

classifier, ten such data sets were created for all combinations of SNR and feature space

size. For the neural network trials, five data sets were simulated. In addition, because of

a dependence on weight and bias initialization, the neural networks processed each set of

observations from five different starting conditions.

68

Considering the empirical results compiled on Figures IV-24, the statistical

classifier attained the greatest level of classification success. The standard MSNN

algorithm and MSNN Mod 2 were the next most successful, followed by MSNN Mods 1

and 3. At high SNR, perceptron performance was comparable to the other classifiers; but

at increased noise levels, dropped off precipitously.

Results for ten- and fifty-feature input spaces are also shown as Figures IV-25 and

IV-26. Due to increased dimensionality, all classifiers performed equally well. In those

instances where the performance of the different classifiers deviated, classification levels

were below ninety-percent. Therefore, comparison of the methods is inconsequential

since all would be considered unacceptable.

Overall, Chapter IV sought to establish classifier feasibility. Disappointingly, the

trial simulations did not show a significant difference between the MSNN variants

studied. The next chapter attempts to make this distinction by examining near real world

application of these methods through simulation and classification of modulated

communication signals.

69

THIS PAGE INTENTIONALLY LEFT BLANK

70

V. CLASSIFICATION OF MODULATED SIGNALS

The intent of this thesis is to demonstrate the robustness of the MSNN variants in

classifying data to the appropriate signal class. In Chapter IV, the performance of these

neuro-classifiers, as well as that of a quadratic statistical classifier and a perception

neural network, were evaluated based on the accuracy attained in categorizing random

vectors composed of artificially simulated features. In this chapter, these classification

tools will be used to separate data objects consisting of features extracted from synthetic

communication signals. The process of feature extraction is introduced prior to

discussing the experimental procedure and simulation results. MATLAB program codes

used during these trials are presented in Appendix C.

A. FEATURE EXTRACTION

By identifying the class to which a signal belongs, classification tools convert

data to information, freeing the operator from the tedium of manually associating objects

to class. Such processes consequently enable the military commander to garner

knowledge and wisdom efficiently, thereby allowing him to more effectively interpret,

predict, and appropriately respond to the environment. In short, these classification tools

increase his situational awareness and improve his decision-making capability.

However, automating such capabilities is not a trivial endeavor. This thesis has

identified and demonstrated tools that facilitate information and knowledge management,

but has neglected to specify how in real-world applications the observation vectors would

be obtained. Indeed, "a major problem in the area of modulation recognition is the

choice of distinctive marks for distinguishing between the different types of modulation

without knowledge of modulation parameters" (Reichert, 1992, p.221).

In trying to determine the extraction method to employ, most techniques avoid

time-domain features because they have been shown to lack robustness at low SNR

(Ghani and Lamontagne, 1993, p. 111). A noteworthy exception to this may be the

exploitation of hidden periodicities found in cyclostationary signals. As recognized by

Reichert, attributes of the complex envelope of linearly modulated signals, when mapped

71

to a single power spectral line by an appropriate transformation, uniquely identify the

underlying modulation type. Moreover, this method is robust in noisy environments

since uncorrelated noise will not add spectral lines that could be read as modulated

signal. (Reichert, 1992)

In another approach, the features of interests were counts falling into subdivisions

of the signal plane. Conceptually, this gives an empirical distribution of the observed

data. Then using a distance metric, the Hellinger distance, this distribution can be

compared to known signal densities. The signal corresponding to the lowest distance

measure is chosen as the class type of the observations. (Huo and Donoho, 1998)

Despite interest in these techniques, their incompatibility with neural networks

and mathematical complexity precluded implementation in this study. So instead,

spectral characteristics were used.

Several studies have utilized spectral coefficients as features for classification.

Duzenli used time-frequency characteristics obtained through wavelet decompositions to

categorize underwater signals (Duzenli, 1998), while others used Fourier transform

coefficients for analysis (Ghani and Lamontagne, 1993), (Lallo, 1999). This thesis also

extracted features from the Fourier domain. The creation of these simulated signals and

.execution of empirical trials is discussed next.

B. SIGNAL SIMULATION

1. Signal Construction

The signal plane consisted of three communication modulation types corrupted by

varying degrees of additive, white Gaussian noise. The model for constructing these

signal realizations is represented by Equation 5.1 as

x(t) = s(t) + n(t), (5.1)

with s(t) being the uncorrupted signal; n(t), the additive white Gaussian noise component;

and x(t), the corrupted signal. Specifically, the three signal classes simulated were binary

amplitude shift keying (2-ASK), binary phase shift keying (2-PSK), and binary frequency

shift keying (2-FSK). The governing equations for these signal types are

72

SASK(t) = -^rsin(27ifct) for 0 < t < T (5.2)
VT

spsK(t) = J-sin(27tfct + cpk) for 0 < t < T (5.3)

^-sin(27i SFSK(t) = J-sin(27i(fc+Afk)t) forO<t<T. (5.4)

All signal types had a carrier frequency, fc, of 40 MHz and a signal bit period, T, of 10"7

seconds, resulting in four cycles per message bit. Sampling the continuous signal at 500

MHz gives a discrete time representation of 12.5 samples per cycle or 50 samples per bit.

Different signal realizations were then constructed by encoding random baseband

binary messages with the different modulation types. For 2-ASK, the random message

determined if the signal amplitude, Ak, was zero or one. For 2-PSK, the random message

determined if the phase shift, fa, was zero or n radians. For 2-FSK, the random message

determined if the adjacent frequency spacing , Afk, was zero or 10 MHz. The normalized

sum of squares over all time-domain components then furnished the signal power of each

realization. Using this signal power, the noise power for the desired SNR level was

determined according to

SNR = lOlogio
VPnJ

(5.5)

and added to the signal realization (Equation 5.1). As with the artificial feature

simulations, SNRs of ±20 dB, ±15 dB, ±10 dB, ±5 dB, and 0 dB were considered, as well

as a no-noise case. The final signal representation for each realization was attained by

normalizing each corrupted signal by its overall power level.

To extract the features needed for classification, the time-domain signals were

projected into the Fourier domain where the spectral coefficients directly relate to the

signal's power spectral density. To identify the needed signal characteristics, two

techniques were attempted. The more general approach identified a signal's largest

spectral component and extracted those frequencies whose coefficients exceeded a certain

percentage of this maximum value. Repeated for 100 training realizations of each signal

73

type, the common frequencies from this set of feature vectors specified the identifying

attributes for each signal class. A compilation of these class characteristics provided the

final feature set and dimensionality for the signal space. The training and testing data

objects of each class would utilize this full description of the signal space, and not just

the features initially selected for the individual class type.

Unfortunately, this method proved unreliable. Often one or two components may

typify a certain class, while thirty or more may be extracted from another. Because of

this disparity, the signal space did not fairly distinguish each class, especially those

represented by a small number of attributes. Hence, a more rigid feature extraction

scheme was considered.

Previous studies had ascertained that the information needed to discriminate

different modulation types was contained within a window centered on the carrier

frequency (Ghani and Lamontagne, 1993, p. 113). Using a 1000-point discrete Fourier

transform and knowing the sampling frequency, the carrier frequency was found to reside

at bin 80. For the 2-FSK signals, a second predominate spectral spike also appears at 50

MHz, the sum of the carrier frequency and adjacent frequency spacing; bin 100.

Knowing the bin location of the 40 MHz carrier frequency, three schemes were

used to extract features from the main and first side lobes of the spectrum. In the first

case, the fifty-one spectral coefficients from between bin 30 and 130 (i.e., every other

frequency bin) were used as the extracted features. The second case used the coefficients

of every fourth frequency; the last, every tenth bin. Respectively, the second and third

schemes constitute a signal space of twenty-six and eleven input variables. Figures V-l

through V-3, verify that the selected spectral components do distinguish the three signal

classes. Taken for the eleven feature signal space, these time and spectral representations

of noise-free simulated communication signals specifically show that 2-ASK has more

spectral energy concentrated in the carrier frequency than 2-PSK. The spike at bin 80 is

larger and the side lobes are more subdued for 2-ASK. Also, these two modulation can

be separated from 2-FSK by the absence of the second frequency spike at bin 100.

74

0.1

1 11 11 H
1

11 (a) 0

-0.1
(

0.1

0

-0.1
3(

HI 11 i 1
! _. _ J_

II
3 100 200 300 400 500 600 700 800 900 1000

1AM1M/1 1/1/111 (b) VvMVvv VVl/1/
)0 350 400 450 500 550 600

0
(

4

2

0
(

()

) 100 200 300 400 5(

(c)

)0) 50 100

(d)

150

Figure V-l. Simulated 2-ASK Signal (no noise), (a) modulated signal vs
sample number (b) enlargement of modulated signal vs sample
number (c) spectral characteristics vs frequency bin (d)
extracted frequency bins.

0.1 1 1 1 , . 1
1 1
1 1

0 (a)

-0.1
(

0.1

1 1

) 100 200 300 400 500 600 700 800 900 10 00

0

-0.1
3(

I rnrnrnrnrnm (b)

)0 350 400 450 500 550 6(DO

4 4

0
(
wsl A..

2

0
30 (

(

<Ptt9aT
) 100 200 300 400 5) 50 100 1! 50

(c) (d)

Figure V-2. Simulated 2-PSK Signal (no noise), (a) modulated signal vs
sample number (b) enlargement of modulated signal vs sample
number (c) spectral characteristics vs frequency bin (d)
extracted frequency bins.

75

(a)

-0.1
100 200 300 400 500 600 700 800 900 1000

-0.1

(b)

700

100 200 300 400 500

(C)

50 100

(d)

150

Figure V-3. Simulated 2-FSK Signal (no noise), (a) modulated signal vs
sample number (b) enlargement of modulated signal vs sample
number (c) spectral characteristics vs frequency bin (d)
extracted frequency bins.

Examples of noise-corrupted signals are shown on Figures V-4 through V-6 for a

SNR of 20 dB, and on Figures V-7 through V-10 for an SNR of 10 dB. In these figures,

plot (a) depicts a sample of the uncorrupted normalized time-domain signal versus

sample number; plot (b), the noise-corrupted version versus sample number. Plot (c)

shows the spectral characteristic of the corrupted signal as a function of frequency bin,

while plot (d) displays the frequency bins chosen for an eleven-feature input space.

In retrospect, however, the chosen frequencies should have been more judiciously

selected, such as through a principal component analysis or other feature reduction

method that more compactly describes the signal space (Duzenli, 1998), (Duzenli and

Fargues, 1998), (Fargues and Duzenli, 1998), (Brunzell and Eriksson, 1999). Not having

done so led to inconclusive results for classification of noise-corrupted signals.

Lastly, recognize that a rudimentary communication signal model corrupted by

only additive, white Gaussian noise was considered. More complex modulation schemes,

multi-path receptions, intersymbol interference, interlaced signals, and different fading

76

100 200 300 400 500 600

(a)

-0.1

0 100 200 300 400 500
(C)

100 200 300 400 500 600

(b)

c

C)

50 100 150
(d)

Figure V-4. 2-ASK Signal, (a) enlargement of modulated signal vs sample number
(b) enlargement of corrupted signal vs sample number (SNR = 20 dB)
(c) spectral characteristics vs frequency bin (d) extracted frequency bins.

VJ. 1

0.05
A IIAAAAAA AAJ lAAUl)

0.05

1 IHIUJUA /IrtLlul
0 h flWW If 0 a WmMmi

-0.05

-0.1
5(

IIV V v V V V V« V V vVVvv -0.05

-0.1
5C

V iY ||] y f\ 11 j 11« Y

DO 550 600
(a)

650 7C DO)0 550 600 650 700
(b)

3
I

3

2 I 2
c p?

m
1

0
C

fcpfj 99®®
0

(D 100 200 300 400 5(DO D 50 100 1! 50

(c) (d)

Figure V-5. 2-PSK Signal, (a) enlargement of modulated signal vs sample number
(b) enlargement of corrupted signal vs sample number (SNR = 20 dB)
(c) spectral characteristics vs frequency bin (d) extracted frequency bins.

77

600 600

()

c

???
0 100 200 300 400 500

(C)
50 100

(d)
150

Figure V-6. 2-FSK Signal, (a) enlargement of modulated signal vs sample number
(b) enlargement of corrupted signal vs sample number (SNR = 20 dB)
(c) spectral characteristics vs frequency bin (d) extracted frequency bins.

-0.1
400 500 600

(a)
700 800

-0.1
400 500 600

(b)
700 900

:i
0 100 200 300 400 500

(C)

Ü 111 111 £±_
50 100 150

(d)

Figure V-7. 2-ASK Signal, (a) enlargement of modulated signal vs sample number
(b) enlargement of corrupted signal vs sample number (SNR = 10 dB)
(c) spectral characteristics vs frequency bin (d) extracted frequency bins.

78

0.1

0.05

0

-0.05

-0.1
500 550 600

(a)
650 700 700

JU, ;
100 200 300 400 500

(C)

2\

1

0 ???T 9???
50 100 150

(d)

Figure V-8. 2-PSK Signal, (a) enlargement of modulated signal vs sample number
(b) enlargement of corrupted signal vs sample number (SNR = 10 dB)
(c) spectral characteristics vs frequency bin (d) extracted frequency bins.

0.1

0.05

0

-0.05

-0.1
I

3

2

1

50 100 150 200
(a)

c

99???

c

?

>

???
0 100 200 300 400 500

(C)

50 100 150

(d)

Figure V-9. 2-FSK Signal, (a) enlargement of modulated signal vs sample number
(b) enlargement of corrupted signal vs sample number (SNR = 10 dB)
(c) spectral characteristics vs frequency bin (d) extracted frequency bins.

79

environments would make for enhanced simulation realism. In addition, other digital

signal types, such as radar, optical, and acoustic, could have been substituted for the ones

implemented here. These factors can be explored in follow-on studies.

2. Simulation Protocol

The test procedure used to classify the simulated communication signals was the

same as that used for the artificial signal features. Using the process described above,

100 training and 1000 testing data objects were created for each signal type per trial, with

the set of simulation trials encompassing all combinations of SNR and signal space size.

As before, these feature vectors were normalized (Equation 3.28) for use by the MSNN

variant that required preconditioned input data (MSNN Mod 1) and the covariance

matrices of the training observations were calculated for use by the statistical classifier.

The statistical classifier processed ten data sets of 300 training/3000 testing

vectors each. For the neural networks, five sets of realizations were created; but because

of neuro-classifier dependence on initial conditions, each data set was processed five

times with varying starting weights and bias.

Section V.C reports the findings of these trials.

C. SIMULATION RESULTS

Results for the communication signal simulations are detailed in Appendix B,

Tables B-19 through B-36 and Figures B-l through B-6. For Tables B-19 through B-36,

7ti, 7t2, and 7i3 refer to 2-ASK, 2-PSK, and 2-FSK, respectively.

Unlike the simulations conducted in Chapter IV, the no-noise case could be

examined for the synthetic communication signals constructed. The results for these

trials are included in Appendix B and summarized here in Table V-l. This table indicates

that under no-noise conditions, the standard MSNN algorithm outperformed all other

classifiers, with MSNN Mod 3 being almost as accurate. In particular, Table V-l does

not substantiate the improvements expected of the MSNN Mod 2 variant. It does,

however, corroborate the Chapter IV findings of the MSNN Mod 1 variant. As before,

the input preconditioning approach proved to be the least successful in classifying the

generated signals. Chapter IV results also indicated that the statistical classifier most

80

successfully identified test objects. Table V-l, however, does not support this

conclusion, showing instead that the quadratic classifier performed the least accurately.

CLASSIFICATION METHOD 11 FEATURES 26 FEATURES 51 FEATURES

Statistical Classifier 57.0 33.3 33.3

Perceptron 83.8 87.8 92.9

MSNN 94.3 93.8 94.8

MSNN Mod 1 45.1 64.4 63.0

MSNN Mod 2 91.4 92.2 92.8

MSNN Mod 3 92.6 93.1 94.0

Table V-l. Simulated Signal No-Noise Performance Results (Ave Percent Correct Classification).

To better understand the decline in statistical classifier performance as well as the

results obtained with noise-corrupted signals, it is worthwhile to revisit Figures V-4

through V-9. Although the no-noise representation of these signals (Figures V-l through

V-3) clearly characterize the signal classes, the noise-corrupted plots show similarities in

the feature descriptions of the different signal types, particularly between 2-ASK and 2-

PSK. Comparing the 20 dB realizations of Figures V-4(d) and V-5(d), only the center

frequency amplitudes differentiate the two modulation schemes. Coefficients of the

remaining bins have approximately the same magnitude. When the 2-FSK signal is

considered (Figure V-6(d)), the only significant distinction between the signal classes

occur at bins 80 and 100, the two carrier frequencies of the 2-FSK modulation scheme.

The same observations apply to the 10 dB examples.

Now considering Figures B-l through B-6, the lack of distinguishing features

between class types explains the poorer results obtained with the noise-corrupted

simulated signal data as compared to the artificial features of Chapter IV. The reduced

distinction between modulation types increased classifier confusion, thereby degrading

81

classification performance. Furthermore, altering the signal space dimension did not

effect the average correct classification percentage of the MSNN variants suggesting that

the information needed to separate the classes resided in a smaller number of features

(Figures B-3 through B-6).

For the statistical classifier, the over-parameterized input space illustrates the

curse of dimensionality (Bishop, 1995, p. 7). Unlike the neural classifiers that showed

improved performance (albeit, marginal) with increased signal space size, the quadratic

classifier exhibited poorer results (Figure B-l). These degraded results were attributed to

ill-conditioning of the data matrix caused by a linear dependency of the chosen features.

This supposition was verified by performing a principal component analysis (PCA) that

reduced the feature space size (Bishop, 1995, p. 310-311). Doing so resulted in the

improved classifier results of Table V-2.

FEATURES

RETAINED INITIAL

No NOISE

BEFORE AFTER

SNR 20 dB

BEFORE AFTER

4

51 33.3 93.5 75.4 87.5

26 33.3 93.1 79.6 87.0

11 56.3 55.1 79.0 81.9

6

51 33.3 53.0 75.5 89.3

26 33.3 44.5 79.3 87.1

11 61.6 54.2 78.8 81.3

Table V-2. Statistical Classifier Performance Before and After Data
Conditioning (Ave Percent Correct Classification).

Table V-2 confirms that the signal space was originally over-parameterized. In

nearly all cases, the percentage of correct classifications increased, with significant gains

observed in the no noise case for feature reductions from fifty-one and twenty-six to four.

Only the no-noise, eleven-to-four or eleven-to-six reductions resulted in moderately

82

poorer results. The results obtained by the eleven-to-four component reduction can be

attributed to statistical variance. It is expected that conducting more trials would effect

no change due to data space conditioning. For the eleven-to-six reduction, the declining

results are caused by selecting a basis set that increased the ambiguity between the

distinct class data distributions, thereby incurring a loss of distinguishing information.

But regardless of these instances, pre-processing of the input data through PCA

techniques generally improved statistical classifier performance. Results validating this

enhancement over all SNR conditions are included on Figure B-l.

Fortunately, the signal space over-parameterization that necessitated data pre-

processing to obtain adequate statistical classifier performance has less effect on neural

network accuracy. Granted, judicious feature extraction by methods such as principal

component analysis improves neuro-classifier results; but intensive pre-processing is not

essential since non-parametric classifiers let the "data speak for itself (Haykin, 1994, p.

23). In addition, the over-parameterized feature space does not favor any particular

neural network architectures and, hence, simulation results can be compared. Figures V-

10 through V-12 compile the data of Figures B-l through B-6 to provide this contrast of

classifier capabilities.

Although all noise-corrupted simulated signal trials were inadequate based on the

ninety-percent correct classification criteria stipulated in Chapter IV, Figures V-10

through V-12 does allow comparison of classifier performance. For instance, these

graphs show that without input data conditioning by eigenvalue or other feature reduction

techniques, the statistical classifier performed worse than all mean separator approaches

except MSNN Mod 1 in the signal spaces considered. Using a principal component

technique to reduce the input to four features, however, improved the statistical classifier

accuracy to the same level as these MSNN methods.

Figures V-10 through V-12 also show that the perceptron performed worse than

the MSNN variants in most cases. To account in part for this lower accuracy, Table V-3

lists the percentage of perceptron non-type classifications for each simulation trial. As

83

110

^^
^8 100

c go o

w so
<t=
V)
ID 70
ca
O eo
o
V so
t- o
Ü 40

(U > <

Statistical Classifier
Stat Classifier [PCA]
Perceptron
MSNN
MSNN Mod 1
MSNN Mod 2
MSNN Mod 3

O
SNR (dB)

Figure V-10. Performance Comparison: Simulated Signals (11 features).

110

.«—N ^ -100

c 90

H so
IP

8? 7-0
in
0 60

f)
to SO
t-.
0
Ü 40

a> > <

Statistical Classifier
Stat Classifier [PCA]
Perceptron
MSNN
MSNN Mod 1
MSNN Mod 2
MSNN Mod 3

-20 O
SNR (dB)

Figure V-ll. Performance Comparison: Simulated Signals (26 features).

o
SNR (dB)

Figure V-12. Performance Comparison: Simulated Signals (51 features).

84

before, this poor classification performance by the perception is attributed to the neural

network's inability to establish viable class separation.

SNR
(dB)

11
FEATURES

26
FEATURES

51
FEATURES

No Noise 3.6 3.4 0.7

20 37 11.1 8.5

15 23.8 7.3 7.9

10 4.2 9.2 7.2

5 9.9 6.0 7.5

0 6.7 15.3 14.7

-5 15.0 16.8 10.7

-10 9.6 15.0 14.4

-15 17.5 8.8 6.9

-20 10.6 8.9 10.9

Table V-3. Observed Percentage of Perceptron Non-Type Classification.

In addition, these figures further substantiate the insufficiency of MSNN Mod 1.

All plots show poorer performance for this MSNN variant as compared to the other

MSNN techniques, with this degraded classification being attributed to the inherent

similarity in the 2-ASK and 2-PSK signal descriptions and greater feature space data

overlap resulting from input normalization.

With regards to the remaining MSNN variants, the outcome from trials conducted

with noise-corrupted signals failed to conclusively identify which was more accurate.

The simulation results were nearly identical. This, however, does not suggest a

conceptual flaw in MSNN Mods 2 and 3, but rather indicates inadequate training. As

before, network training for these modified techniques stopped on maximum epoch limit

rather than satisfied VMR. Therefore, the networks were not effectively trained to

85

classify follow-on observation. Once more, increasing the epoch limit, refining the

learning rate methodology, and softening of the VMR threshold may provided for MSNN

performance distinction.

As final evidence of classifier performance, MSNN neuron maps for the SNR and

feature space conditions of Figures V-4 through V-9 are provided. Shown as Figures V-

13 through V-20, these plots support the findings just described. Of particular interest,

Figures V-14 and V-18 demonstrate the inadequacy of MSNN Mod 1 by the non-

uniformity of the neuron maps. In addition, the neuron maps for the remaining MSNN

variants illustrate the similarity in 2-ASK and 2-PSK specifiers that resulted in equivalent

performance plots.

86

nun

LI Uul IUL_

1-T

»

es

i-
s

! -

r . '. J

 1

10 ¥ » IT
^"1 ■
rc 1
«S 1
a 1
es
§
a ° ,
0
ki
3
s>-s

—

z

1 1

2-ASK Specifier
-2.7
-10
-10

Test Point

2-PSK Specifier
7.3
-10
-10

2-FSK Specifier
-8.8
9.9
9.9

Figure V-13. MSNN Neuron Map of 11-Features Simulated Signal Data (SNR = 20 dB).

87

"10 innifinii i f*i y II i
*£ I II 1
°< II es 1 II 1 1 Hill 1

1

*'°\ 1 HII In 1

o III
3 1 1H1 1 II UI III
£ 5 f MI z 1 II 1 11II I r

i—i s
a
es

!°
2
s a» -s z

, _, t—^—

— - * -- r— i i-*i ^ i ' - - i-1 ■ *

Test Point

Figure V-14. MSNN Mod 1 Neuron Map of 11-Features Simulated Signal Data
(SNR = 20 dB).

88

M

I—I 5
a
es

S0 a
o u
3 ̂.5

1ULÄ

rf
I—I s
a es

?•
2
s

nr nnir

Test Point

2-ASK Specifier
-1.9
-8.6
-10

2-PSK Specifier
0.4
-9.8
-10

2-FSK Specifier
-9.8
9.7
8.4

Figure V-15. MSNN Mod 2 Neuron Map of 11-Features Simulated Signal Data
(SNR = 20 dB).

89

a es

2
s

111

x^^nrnryrn

KAjWhkt^^^

^TF r

2-ASK Specifier
-3.0
-9.2
-8.5

Test Point

2-PSK Specifier
6.9
-9.6
-9.4

2-FSK Specifier
-8.9
9.7
9.8

Figure V-16. MSNN Mod 3 Neuron Map of 11-Features Simulated Signal Data
(SNR = 20 dB).

90

tn

es
s
§° u
a
V
Z-5

CD

a «

a °
2
s

S *tkA- „AjnA-k^K- 1 ̂ -i -** ■*

I

m

2-ASK Specifier
6.3
-9.8
9.9

Test Point

2-PSK Specifier
-4.6
-9.9
10

-_

2-FSK Specifier
3.3
9.3
-9.5

Figure V-17. MSNN Neuron Map of 11-Features Simulated Signal Data (SNR = 10 dB).

91

Figure V-18. MSNN Mod 1 Neuron Map of 11-Features Simulated Signal Data
(SNR = 10 dB).

92

M

o u
s

m

a es

B
s
S «5

a es

&

2-ASK Specifier
63
-6.4
-5.2

Test Point

2-PSK Specifier
7.4
-6.4
-5.2

2-FSK Specifier
6.9
-9.2
-9.2

Figure V-19. MSNN Mod 2 Neuron Map of 11-Features Simulated Signal Data
(SNR = 10 dB).

93

Test Point

2-ASK Specifier 2-PSK Specifier 2-FSK Specifier
-5.3 2.2 -3.7
10 10 -7.6
10 10 -9.4

Figure V-20. MSNN Mod 3 Neuron Map of 11-Features Simulated Signal Data
(SNR = 10 dB).

94

D. SUMMARY

Chapter V investigated the classification of software-generated communication

signals in varying levels of noise. For the six classification methods discussed in this

study, 100 testing and 1000 training realizations of 2-ASK, 2-PSK, and 2-FSK signals

were created by encoding random binary messages. The experimental protocol followed

the one used in Chapter IV. The quadratic classifier catalogued ten sets of data, while the

neural networks processed only five. The neural networks, however, processed each data

set five times from different initial conditions.

Figures V-10 through V-12 indicate that all trials were inaccurate (i.e., less than

ninety-percent correct classification success). This observation, however, is not due to

the classifiers themselves, but to the feature space definition. A more prudent selection

would have included parameters that more distinctly differentiated the 2-ASK and 2-PSK

signals. This not being the case, the simulation results showed a high degree of

misclassification between these two modulation types.

Yet, the primary emphasis of this investigation was not to accurately categorize

observations, but to compare classifier capabilities. For instance, analyzing noise-free

signal data proved that the standard MSNN algorithm performed best. Furthermore,

when considering noise-corrupted data, none of the proposed MSNN schemes showed

substantial improvement over the standard approach. In particular, MSNN Mod 1

delivered inferior results due to the aforementioned feature description similarity in the 2-

ASK and 2-PSK signals and increased data overlap caused by signal space normalization.

The remaining MSNN methods produced outcomes comparable to the original MSNN

formulation. Hence, no noteworthy advantage was realized by the proposed changes to

the standard MSNN algorithm.

The MSNN techniques did fair markedly better than the perceptron neural

network. Without a priori knowledge of the data set or optimal selection of signal

features, the mean separators also performed better than the statistical classifier. Granted,

when the input data was conditioned by feature space enhancing techniques such as the

eigenvalue methods used here, dramatic gains in quadratic classifier performance were

95

realized. But, for the principal component reduction utilized, this improved outcome did

not exceed the mean separator results, substantiating the greater utility of neural

networks, in general, and the MSNN, in particular.

96

VI. CONCLUSIONS

A. SUMMARY OF WORK

The age of enhanced digital data collection and distribution requires electronic

information management techniques that will assist and not hinder the warfighter. These

applications must be rapid, reliable, and automated. This thesis investigated the

continued development of one such tool.

The Mean Separator Neural Network (MSNN) had previously been applied to the

classification of underwater signals. This study modified the MSNN and evaluated the

performance of these variants in categorizing software simulated signals. Starting with a

general introduction to neural networks, classification techniques were introduced and

explained. In addition to the original MSNN developed by Duzenli and Fargues, two

non-MSNN schemes were utilized as benchmarks to gauge proposed methods. The first

considered was a pure parametric statistical classifier; specifically, a quadratic classifier.

The decision rule for this statistical classifier was derived for later use:

The second benchmark implemented was a single layer perceptron neural

network. The underlying concept of the perceptron was explained and its fundamental

processing element constructed. Li particular, the decision rule for perceptron neuro-

classification was presented. To classify using the perceptron, however, first required

training the network to discriminate the different class types. Hence, the perceptron

learning rule and its role in network training was discussed. Finally, the disadvantages of

the perceptron networks were identified as limitations due to the use of linear decision

boundaries and the lack of solution optimization techniques. As an addendum, the Fixed-

Increment Theorem of perceptrons was developed for edification. This precept specifies

that for certain problem types, the perceptron neural networks will converge to a solution

in a finite number of steps.

The central emphasis of this proof of concept study was enhanced implementation

of the MSNN. But, to better understand these improvements, the standard MSNN

classification scheme was first explained. The goal of the MSNN is to maximize the

97

mean separation of data projected into a decision space. The mathematical method for

achieving this objective was presented as a basis for understanding the design of the

MSNN neural processing element. Then, using this fundamental building block, the

study next examined the three stages of solving a classification problem with the MSNN:

training, typing, and decision-making.

Network training was accomplished using a steepest descent algorithm in which

the training trajectory was governed by the mean-difference projection index, MD. This

training algorithm also employed a dynamic learning rate rule to control the training

trajectory.

After training the network, typing was completed by using the mean separator

equation to assign a unique numerical sequence to each class. In the decision-making

stage, these class specifiers are then compared to the network output of subsequent data

to identify the uncategorized observations.

By merely focusing on maximizing mean separation, however, the MSNN fails to

recognize the impact of data variance. Indeed, wide mean separation may be

inconsequential if data spread is equally large. Conversely, a small difference in

projection space means could be acceptable for tightly clustered data. Because of this,

three modifications to the MSNN algorithm were proposed and evaluated.

The first MSNN variant (MSNN Mod 1) suggested that MSNN performance may

be improved by pre-processing the input data. By normalizing the data about its mean,

we endeavored to tighten the input data distribution and reduce data overlap in the feature

space. Mapping these distributions into the decision space would then result in greater

precision to the optimal values; thus, less intersection of the decision space distributions

and greater classification accuracy. Unfortunately, it was recognized that this may not be

the case. Input data normalization may increase input data diffusion and transformation

into the decision space may not preserve cluster cohesion.

The second MSNN variant (MSNN Mod 2) sought to improve mean separator

performance by normalizing the projection space instead of the input space. Essentially,

the concept entailed maximizing projection data mean spread relative to projection data

98

variance. Doing this provides for thorough evaluation of the projection data distributions.

Because of this, a large mean separation may or may not be beneficial dependent on how

accurately the input data was mapped into the decision space. That is, data projection

resulting in a large mean difference may be meaningless if the projected data variance

was also significantly large. Conversely, small mean separation could be tolerable for

instances of small data variance.

Implementation of this model, however, was not as straightforward as that of the

pre-conditioned input variant. Whereas the pre-conditioned input data method only

required normalizing the feature space and adjusting the decision scheme, accounting for

projection space variance necessitated deriving a new performance index (MD2) and

training termination parameter (VMR).

The third MSNN variant (MSNN Mod 3) investigated utilized the projection

index of the standard MSNN algorithm coupled with the new training termination

parameter developed for the normalized projection space method.

Utilizing these six classification methods, two types of trials were conducted. In

the first, random vectors composed of simulated feature components were generated.

Classifier performance, reported as a percentage value, was measured as the accuracy

obtained in properly categorizing test data of known class type. In general, increased

SNR and feature space dimensionality produced improved classifier performance for all

techniques. Of the benchmarks used, the statistical classifier had the best classification

results; the perceptron, the worse for all but the largest feature space trials.

The MSNN variants produced inconclusive results. MSNN Mod 1 performed

markedly worse with a small feature space size. But as feature space dimensionality

became larger, input data preconditioning delivered significantly better results. The

classification performance of MSNN Mod 2 equaled that of the standard MSNN

approach. This lack of significant improvement was predominately due to the MSNN

Mod 2 networks not being adequately trained. Network training often terminated on

maximum epoch cycles rather than VMR threshold. This same reason also partly

explains the classification performance of MSNN Mod 3.

99

Having gained a rudimentary understanding of each classifier's capabilities, a

second set of trials tested their performance with software simulated communication

signals. Specifically, three types of binary modulation schemes were implemented: 2-

ASK, 2-PSK, and 2-FSK.

As before, the perceptron had the worse classification results. The statistical

classifier, however, did not demonstrate the best performance. In fact, unlike the other

techniques, the quadratic classifier showed lower accuracy with increased feature space

size. This tendency was due to a correlation between feature space components, resulting

in an ill-conditioned covariance matrix. Extracting the principal components to reduce

the input dimensionality dramatically improved statistical classifier performance.

Examining the outcome of no-noise trials, the standard MSNN methodology

outperformed all other classifiers. Moreover, when considering noise-corrupted signals,

simulation results were, as in Chapter IV, irresolute. MSNN Mod 1 did consistently

present the worse results, presumably due to the similarity in 2-ASK and 2-PSK feature

components and increased signal space data diffusion caused by normalization. All other

methods were essentially equivalent. The lack of improvement from MSNN Mods 2 and

3 was ascribed to inadequate network training.

B. SUGGESTIONS FOR FUTURE RESEARCH

The intent of this thesis was to propose and validate modifications to the MSNN

classifier. Three such modifications were presented. When considering noise-corrupted

signals, none showed significant improvement over the standard MSNN approach. In

particular, MSNN Mod 2, which emphasized projection data variance in addition to mean

separation, only performed as well as the standard MSNN algorithm. This lack of proof

of concept, however, is not due to discrepancies in the underlying fundamentals of the

approach, but rather to method implementation. In particular, two aspects deserve further

consideration.

One likely cause of inadequate network training using the MSNN Mod 2 variant

may be due to reaching the maximum epoch limit prior to satisfying the VMR threshold.

Therefore, to improve the performance of the MSNN projection space normalization

100

scheme, the maximum epoch setpoint and learning rate rules require thorough

investigation. With regards to the latter, instead of using an adaptive learning rate

approach, starting with a static learning rate (i.e., one that is only dependent on the

gradient of the performance parameter) may provide better results when compared to the

standard mean separator.

In addition, it may also be instructive to reduce the stringency of the VMR

threshold. As used in this study, a VMR value of zero equates to 0.5% class overlap,

assuming normally distributed data. Furthermore, the termination requirement sets the

VMR threshold at 0.90. This combination of overlap and ratio may be unnecessarily

restrictive. Therefore, studies could be conducted to empirically establish justifiably

values.

The termination requirement for MSNN Mod 2 should also be re-evaluated.

VMR was used as a training terminator only if the projection index (MD2 for MSNN

Mod 2 and MD for MSNN Mod 3) showed training movement towards an improved

solution. For MSNN Mod 2 this would have become apparent in the VMR value itself.

Therefore, the requirement to show decreasing performance parameter values is

unnecessary. For MSNN Mod 3, the performance parameter only takes into account

projected data mean separation. By neglecting to consider data variance, the underlying

principle of VMR is disregarded since improved conditions could result when mean

separation decreases (provided the relative decrease in data variance is greater).

Because of this inadequacy of MSNN Mod 3, it may have been more beneficial to

use VMR as the performance parameter instead of either of the two mean-difference

equations. This performance parameter would essentially be the reciprocal of MD2. As

such, the difficulties encountered due to the infinitesimally small projection variances

(i.e., division by zero) would be avoided.

Once an optimal mean separator algorithm has been determined, the modified

MSNN classifier could be used to identify real-world signals (e.g., radar, communication,

acoustic). This would, however, require a high degree of classifier accuracy. Recall that

the intent of this investigation was to compare proposed alterations to the MSNN

101

algorithm. As such, absolute classifier accuracy was not the aim; rather relative classifier

accuracy was. If a high degree of absolute classifier accuracy is desired (such as for

categorizing real-world signals), judicious feature extraction schemes and pre-processing

techniques are needed. When proved successful, the modified MSNN classifier utilizing

this refined feature selection approach can then be expanded from a software application

to direct implementation on an integrated circuit. Having such a device would greatly aid

the operational commander in understanding the battlespace and making critical

decisions.

102

APPENDIX A.FIXED-INCREMENT CONVERGENCE THEOREM

Rosenblatt reasoned that for a single-layer perceptron applied to linear separable

problems, a solution can be determined in a finite number of iterations. Stated formally,

this fixed-increment convergence theorem asserts:

Let the subsets of training vectors Xi and X2 be linearly separable. Let the
inputs presented to the single-layer perceptron originate from these two
subsets. The perceptron converges after some no iterations, in the sense
that

w(n0) = w(n0 + 1) = w(n0 + 2) = ...

is a solution vector for n0 < n^. (Haykin, 1994, p. 111).

To prove this theorem, the following vector notation is used for convenience:

x =
w

and z = V
b _lj (A.1)

Using this notation, the input to the hardlim activation function, n, can be expressed as

n = w.p + b = xT .z. (A.2)

Similarly, the perceptron learning rule Equations 3.11 and 3.12 can be combined into the

single vector equation

xnew =xold+ez_ (A.3)

Given a solution x* to the classification problem,

*T n = x «z < (A.4)
>5>0 if t = l

<-5<0 if t = 0

Equation A.4 implies that there exists a positive 5 less than the magnitude of the inner

product n for both target output possibilities.

After k training iterations, the perceptron learning rule (Equation A.3) results in

an updated solution be given by

x(k) = z'(k-l) + z'(k-2) + ... + z'(0), (A.5)

103

where the prime (') accounts for the possible error values 0 and ±1 and it is assumed that

the w(0) = 0. Taking the inner product of the solution vector x* with Equation A.5 yields

x*T. x(k) = x*T. z'(k -1) + x*T . z'(k - 2) +... + x*T. z'(0) (A.6)

and using the inequality relationships of Equation A.4 in Equation A.6 leads to

x*T.x>k5, (A.7)

with S chosen as the minimum z'(i). With the Cauchy-Schwartz inequality, a lower

bound on the square of the weight vector x(k) is therefore found to be

H /1N|,2^(x*T.x(k))2 (k5)2

|x(k)| >-^ -^L>1^_ (A.8)
x X

To find the upper bound for the square of the weight vector at iteration k,

Equation A.3 is substituted into the length equation:

||x(k)f =x*T(k).x(k)=[x(k-l) + z'(k-l)r.[x(k-l) + z'(k-l)] (A.9)

= ||x(k - if + ||z'(k - l)f + 2xT(k - l)z'(k -1)

When proper classification occurs, the cross-term in Equation A.9 will be zero. If

misclassification occurs, this term will be negative. Hence, Equation A.9 can be

rewritten as an inequality:

|x(k)|2<|x(k-l)|2+||z'(k-l)||2. (A.10)

Repeating this derivation for all previous iterations of || x(i) ||2, the upper bound on the

square of the weight vector is found to be

]x(k)||2 <|z'(0)|2+||z'(l)r + - + |z'(k-l)||2 <kA (All)

where A is the maximum z'(i).

Finally, combining Equations A. 8 and A. 11 results in a closed form solution for

the number of iterations, k, required for perceptron convergence:

104

Ä|x(k)|f<kA
X

k<
x

(A.12)
ö"

The assumptions made to arrive at this conclusion were that (1) a solution is known to

exist and (2) the length of the input vectors is upper-bounded. (Hagan, et al, 1996, pp. 4-

15-4-18).

105

THIS PAGE INTENTIONALLY LEFT BLANK

106

APPENDIX B. SIMULATION RESULTS

To determine the capabilities of the classifiers studied, two types of simulations

were conducted. The first set of tests gauged the performance of the different classifiers

by creating artificial features for different class types. Once provided with this initial

assessment of the different classification schemes, the second simulation measured their

ability to categorize simulated communication signals. Appendix B contains the results

from both types of trials.

Simulation results are presented in two forms. On Tables B-l through B-36,

confusion matrices report classifier performance. A confusion matrix is an m x m matrix,

m being the number of categories in the classification problem. Read horizontally, each

confusion matrix lists the correct class type; vertically, the class type selected by the

classifier. The elements within each matrix indicate the percentage of objects (i.e.,

testing input data vectors) categorized as a certain class. In particular, the diagonal

elements give the percentage of correct classifications for a particular simulation

situation. Averaging these diagonal elements results in a performance index for that

particular classifier under the specified conditions. Disregarding slight deviation due to

round-off error, each table row sums to 100% for all classifiers except the perceptron

neural network. The confusion matrices for the perceptron neural networks do not show

rows that sum to 100% due to non-class typings as reported on Tables IV-1 and V-2.

Tables B-l through B-18 report results for the first set of simulations conducted;

classification of data objects consisting of artificial features. Tables B-19 through B-36

report results for the set of simulations conducted on simulated communication signals.

On these latter tables, %\, n2, and 7t3 correspond to simulated 2-ASK, 2-PSK, and 2-FSK

class of software created signals.

Plots of the average performance indices permit visual analysis of the effect of

varying noise level and input space dimensionality. These graphs are provided as Figures

B-l through B-6. Chapters IV and V contain performance index graphs that allow direct

comparison of the different classification methods.

107

For all tables and plots, MSNN Mod 1 refers to the MSNN variant with input

space preconditioning; MSNN Mod 2, the MSNN variant with projection space

normalization; and MSNN Mod 3, the MSNN variant utilizing the standard MSNN

performance parameter, MD, and the new training termination limit, VMR.

108

INDEX:
99.1

SELECTED

7t]* 712* 7t3*

i "2
< n3

99.8 0.2 0.0

0.2 98.2 1.7

0.0 0.6 99.4

INDEX:
97.7

SELECTED
7t,* 7t2* 7I3*

g 7t2

< %

98.5 0.3 1.2

0.4 97.8 1.8

1.4 1.7 96.8

SNR = 20dB SNR = 15 dB

INDEX:
94.0

SELECTED

7t] * TE2* 7E3*

<
H
U

92.6 5.8 1.6

6.3 92.3 1.4

1.6 1.3 97.1

INDEX:
86.2

SELECTED

Ttj* 7l2* JI3*

<
g TC2

92.0 3.5 4.5

4.2 83.5 12.3

5.6 11.4 83.1

SNR=10dB SNR = 5 dB

INDEX:
73.2

SELECTED

TCi* 7t2* %*

74.2 11.1 14.7

8.5 83.4 8.1

18.2 19.7 62.0

INDEX:
64.6

SELECTED

7li* 712* 7C3*

i *2
< 7t3

63.9 17.7 18.4

18.2 61.5 20.3

16.6 15.1 68.4

SNR = 0dB SNR = -5 dB

INDEX:
58.8

SELECTED
Ttj* 7t2* JI3*

<
P "2
U
■< 7C3

64.3 16.8 18.9

20.9 66.2 12.9

31.1 23.0 45.8

SNR = -10 dB

SNR = -20 dB

INDEX:
60.1

SELECTED

Hi* 7C2* ^3*

<

u
•< 713

59.6 23.8 16.6

20.4 57.4 22.2

15.8 20.8 63.4

INDEX:
52.7

SELECTED

TCj* 7C2* 7I3*

i "2
u
•< 7t3

53.7 21.3 25.1

26.2 46.2 27.6

25.5 16.1 58.4

SNR = -15 dB

Table B-l. Confusion Matrices for Simulated Feature Trials (Three-Class, Three-Features):
Statistical Classifier, (see App B cover page for table description)

109

INDEX:
100

SELECTED
7t,* 7t2* 7I3*

<

u
< 7t3

100 0.0 0.0

0.0 100 0.0

0.0 0.0 100

SNR = 20 dB

SNR = 10 dB

INDEX:
100

SELECTED

TCi* 7t2* 7C3*

< 7t3

100 0.0 0.0

0.0 100 0.0

0.0 0.0 100

INDEX:
96.7

SELECTED
TCi* 7t2* Tt3*

< 7C3

96.6 2.6 0.8

2.3 95.6 2.1

0.4 1.8 97.7

INDEX:
100

SELECTED
TCi* 7t2* 7l3*

■< 7t3

100 0.0 0.0

0.0 100 0.0

0.0 0.0 100

SNR = 15 dB

SNR = 5 dB

SNR = 0 dB

INDEX:
99.7

SELECTED

TCi* 7I2* 7C3*

< n3

99.7 0.3 0.1

0.4 99.5 0.1

0.0 0.0 99.9

INDEX:
89.1

SELECTED
TCi* 7C2* 7C3*

i "2
u
< 7C3

90.8 6.1 3.1

6.8 87.3 5.9

4.0 6.7 89.3

SNR = -5 dB

INDEX:
76.5

SELECTED

71] * 7C2* 71,*

| "2

o
< 7C3

79.6 13.7 6.7

13.2 72.5 14.3

8.0 14.4 77.5

SNR = -10 dB

SNR = -20 dB

INDEX:
77.1

SELECTED
TCi* 7t2* 7l3*

< 7t3

75.6 15.8 8.6

13.7 76.5 9.8

10.3 10.5 79.1

INDEX:
73.3

SELECTED

71]* 7l2* 7I3*

i "2
< 7t3

83.8 8.4 7.7

12.6 66.1 21.3

11.7 18.4 69.9

SNR = -15 dB

Table B-2. Confusion Matrices for Simulated Feature Trials (Three-Class, Ten-Features):
Statistical Classifier, (see App B cover page for table description)

110

INDEX:
100

SELECTED

7ti* 7t2* 7t3*

<
O 7I2
H
U
•< %

100 0.0 0.0

0.0 100 0.0

0.0 0.0 100

INDEX:
100

SELECTED
7ti* 7t2* 7t3*

< 7t3

100 0.0 0.0

0.0 100 0.0

0.0 0.0 100

SNR = 20 dB SNR = 15 dB

INDEX:
100

SELECTED

71] * 7t2* 7t3*

< 7t3

100 0.0 0.0

0.0 100 0.0

0.0 0.0 100

INDEX:
100

SELECTED
Ttj* 7t2* 7t3*

| "2

<5 7t3

100 0.0 0.0

0.0 100 0.0

0.0 0.0 100

SNR = 10 dB SNR = 5 dB

INDEX:
100

SELECTED
7Ij* 7t2* 7I3*

<
g 7t2

U
•< 7t3

100 0.0 0.0

0.0 100 0.0

0.0 0.0 100

INDEX:
99.4

SELECTED
7Ij* 7I2* TC3*

i "2
u
< 7I3

99.6 0.1 0.2

0.6 99.0 0.4

0.2 0.2 99.6

SNR = 0 dB SNR = -5 dB

INDEX:
96.9

SELECTED
Tli* 7t2* 7t3*

i *
■< 7i3

96.5 1.4 2.1

1.3 97.5 1.2

2.1 1.0 96.8

INDEX:
93.8

SELECTED

7li* 7l2* 7t3*

g 712
ü
■< 7l3

94.4 2.8 2.8

4.3 93.3 2.4

4.0 2.2 93.7

SNR = -10 dB SNR = -15 dB

INDEX:
96.4

SELECTED
7Ij* 7t2* 7I3*

<
g 7C2
u

98.0 1.2 0.8

1.7 96.2 2.1

2.5 2.5 95.0

SNR = -20 dB

Table B-3. Confusion Matrices for Simulated Feature Trials (Three-Class, Fifty-Features):
Statistical Classifier, (see App B cover page for table description)

111

INDEX:
96.1

SELECTED
7lj* 7t2* 7T3*

■< 7t3

98.3 0.3 0.5

0.1 94.5 5.5

0.0 4.4 95.5

SNR = 20 dB

SNR = 10 dB

INDEX:
80.9

SELECTED

7ti* 7C2* 7C3*

u
< 7l3

71.8 2.8 23.4

1.0 77.4 21.2

2.6 3.9 93.5

INDEX:
55.1

SELECTED
7t]* 7I2* IX3*

U
•< 7t3

53.4 8.8 33.8

9.8 52.3 30.5

20.5 16.8 59.8

INDEX:
95.2

SELECTED
7ti* 7t2* 7t3*

<! 7C3

96.0 0.3 3.6

0.2 95.7 2.2

4.0 2.3 93.7

SNR = 15 dB

SNR = 5 dB

SNR = 0 dB

INDEX:
73.5

SELECTED

7t] * 7t2* 7C3*

< 7C3

78.7 2.6 12.8

2.6 64.8 28.2

7.4 15.2 77.0

INDEX:
35.5

SELECTED
71,* 7t2* 7t3*

i ^
u
< 7t3

31.6 12.1 41.6

16.3 28.1 43.7

20.2 22.1 46.8

SNR = -5 dB

INDEX:
31.9

SELECTED
7t]* Jt2* 7t3*

i *2
< 7t3

26.5 15.7 42.6

19.2 23.5 41.1

23.4 18.4 45.8

SNR =-10 dB

SNR = -20 dB

INDEX:
28.9

SELECTED

7t]* 7t2* 7l3*

<
O Tb
H l

U
< 7t3

20.4 18.7 44.8

20.2 17.9 47.4

19.7 18.6 48.4

INDEX:
28.4

SELECTED
7t!* 7I2* 7C3*

1 "2
< 7C3

16.9 11.8 53.2

14.0 14.0 54.9

16.1 11.7 54.3

SNR = -15 dB

Table B-4. Confusion Matrices for Simulated Feature Trials (Three-Class, Three-Features):
Perceptron. (see App B cover page for table description)

112

INDEX:
99.9

SELECTED

TCi* 7C2* 7I3*

<
P % H
U
•< 7C3

99.9 0.0 0.1

0.0 100 0.0

0.0 0.1 99.9

INDEX:
99.8

SELECTED

7Ci* 7t2* 7E3*

1 "2
u
< 7I3

99.9 0.0 0.1

0.0 99.7 0.1

0.0 0.0 99.9

SNR = 20 dB SNR=15dB

INDEX:
99.6

SELECTED

7t! * 7t2* 7Ü3*

< 7l3

99.8 0.0 0.1

0.0 99.7 0.2

0.5 0.1 99.4

INDEX:
96.7

SELECTED

Til* 7C2* 7C3*

i "2
u

96.1 0.2 2.4

0.3 95.5 2.7

0.8 0.7 98.5

SNR = 10 dB SNR = 5dB

INDEX:
84.0

SELECTED

7Ci* 7t2* %*

|Ü "2
U
«Ü 7l3

80.7 2.8 12.5

2.0 82.5 10.3

4.1 7.0 88.8

INDEX:
52.7

SELECTED

7t] * 7C2* TC3*

i "2
u
< 7t3

45.5 6.6 36.2

7.3 46.9 32.1

15.1 15.0 65.6

SNR = 0 dB SNR = -5 dB

INDEX:
38.7

SELECTED

7ti* 7t2* 7t3*

J %1

<

u
•< 7t3

30.0 14.6 39.4

13.3 31.5 40.6

15.0 20.2 54.7

SNR = -10 dB

SNR = -20 dB

INDEX:
32.1

SELECTED

7ti* 7t2* TC3*

i "2
< 7t3

21.9 10.8 49.3

14.4 21.1 48.1

15.7 15.0 53.3

INDEX:
28.3

SELECTED

7t]* 7t2* TC3*

< 7t3

16.5 14.0 50.6

12.4 15.4 51.8

14.7 14.5 52.9

SNR = -15 dB

Table B-5. Confusion Matrices for Simulated Feature Trials (Three-Class, Ten-Features):
Perceptron. (see App B cover page for table description)

113

INDEX:
99.9

SELECTED
7t,* 7I2* 7C3*

| "2

u
<! 7t3

99.8 0.0 0.1

0.0 100 0.0

0.0 0.0 100

SNR = 20dB

SNR = 10 dB

SNR = 0 dB

SNR = -10 dB

SNR = -20 dB

INDEX:
71.1

SELECTED
7li* 7t2* 7t3*

U
< 7l3

71.6 5.0 16.6

6.2 70.6 15.5

12.4 15.8 71.1

INDEX:
34.8

SELECTED
7d* %2* 7t3*

i "2
u
< 7I3

28.5 16.2 38.5

14.9 28.9 39.9

19.0 20.0 47.0

INDEX:
100

SELECTED
71] * 7l2* 7t3*

| *2

u
< 7t3

99.9 0.0 0.0

0.0 100 0.0

0.0 0.1 99.9

INDEX:
99.8

SELECTED
TCi* 7I2* TC3*

< 7C3

99.7 0.0 0.1

0.0 99.9 0.1

0.1 0.3 99.7

INDEX:
99.3

SELECTED
TCi* 7I2* 7t3*

<
j? 7t2

u
■< 7C3

99.4 0.0 0.3

0.0 99.3 0.5

0.2 0.5 99.3

SNR = 15 dB

SNR = 5 dB

SNR = -5dB

SNR = -15 dB

INDEX:
99.6

SELECTED

Til* 7X2* 7C3*

| "2

o
< 7C3

99.7 0.0 0.2

0.0 99.6 0.2

0.2 0.2 99.6

INDEX:
92.5

SELECTED
TCi* 7t2* 7E3*

i "2
u
< 7C3

90.4 0.6 2.9

0.4 93.3 3.5

2.4 3.6 94.0

INDEX:
47.2

SELECTED
71] * TC2* TC3*

u
•< 7t3

44.2 16.3 30.6

17.9 40.9 30.3

20.8 18.6 56.4

Table B-6. Confusion Matrices for Simulated Feature Trials (Three-Class, Fifty-Features):
Perceptron. (see App B cover page for table description)

114

INDEX:
99.6

SELECTED

7ti* n2* 7i3*

i "2
u
< 7l3

99.8 0.2 0.0

0.6 99.3 0.2

0.2 0.0 99.7

INDEX:
96.8

SELECTED

TCi* Th* 1h*

< 7t3

98.3 0.0 1.6

0.0 96.0 4.0

0.6 3.2 96.2

SNR = 20 dB SNR = 15 dB

INDEX:
95.0

SELECTED

Jtl* 7t2* %*

<
P "2 H
U

89.5 1.2 9.3

0.7 98.8 0.5

3.2 0.2 96.5

SNR = 10 dB

INDEX:
89.0

SELECTED

7t] * • JI2* «3*

<
P ^2
U

86.8 5.6 7.6

1.0 96.4 2.7

6.8 9.4 83.7

INDEX:
65.3

SELECTED

TCi* 7t2* %*

P ^
ü

58.0 24.0 18.1

28.1 64.1 7.8

16.3 9.7 74.0

SNR = 5 dB

INDEX:
54.5

SELECTED

7Ii* 7t2* t3*

U

51.4 21.6 27.0

22.4 56.4 21.2

18.5 25.7 55.9

SNR = 0dB SNR = -5 dB

INDEX:
48.2

SELECTED

Jtl* 7t2* %*

J %1

| "2
ü
-< 7I3

54.7 22.8 22.6

25.4 50.8 23.8

27.4 33.6 39.0

SNR = -10 dB

SNR = -20 dB

INDEX:
37.8

SELECTED

7Ii* 7t2* %*

| "2

< %

32.2 37.3 30.6

33.5 45.3 21.1

31.3 32.8 35.9

INDEX:
45.0

SELECTED

Ttj* Jl2* 7t3*

U
<! 7t3

54.6 17.3 28.0

36.1 24.1 39.9

31.5 12.3 56.3

SNR = -15 dB

Table B-7. Confusion Matrices for Simulated Feature Trials (Three-Class, Three-Features):
MSNN. (see App B cover page for table description)

115

INDEX:
99.8

SELECTED 1

Ttl* 7t2* JI3* |

l "2
99.7 0.0 0.3 i

0.0 100 0.0 1

0.1 0.0 99.9 |

SNR = 20 dB

SNR = 10 dB

SNR = 0 dB

SNR = -10 dB

SNR = -20 dB

INDEX:
53.6

SELECTED

Tti* 7t2* 7t3*

J Ä1

| "2

u
< 7t3

46.0 28.2 25.8

21.2 56.7 22.1

18.4 23.4 58.2

INDEX:
36.7

SELECTED

7t,* 7t2* 7t3*

| *2

u
•< JI3

35.8 32.9 31.3

29.0 38.7 32.3

31.9 32.4 35.7

INDEX:
99.9

SELECTED
7ti* 7t2* %*

i "2
100 0.0 0.0

0.1 99.8 0.0

0.0 0.0 100

INDEX:
99.4

SELECTED

71,* 7C2* 7t3*

<
O 7I2

O
< 7t3

99.5 0.3 0.3

0.6 99.3 0.1

0.2 0.4 99.4

INDEX:
90.4

SELECTED
71,* 7t2* 7I3*

< 7t3

93.8 3.5 2.7

4.0 89.9 6.1

6.1 6.3 87.5

SNR = 15 dB

SNR = 5 dB

SNR = -5 dB

SNR = -15 dB

INDEX:
97.8

SELECTED

71]* 7t2* %*

< 7t3

97.3 0.4 2.4

0.8 98.3 0.9

1.2 0.9 97.9

INDEX:
68.2

SELECTED
7t]* 7t2* 7t3*

< 7C3

59.4 22.6 18.0

15.9 70.9 13.2

13.4 12.4 74.2

INDEX:
44.4

SELECTED

71,* 7C2* 7C3*

| "2

u
-< 7I3

44.9 29.1 26.0

25.8 45.4 28.8

27.9 29.2 42.8

Table B-8. Confusion Matrices for Simulated Feature Trials (Three-Class, Ten-Features):
MSNN. (see App B cover page for table description)

116

INDEX:
100

SELECTED

7t,* 7C2* 7C3*

<
P n2 H
O
< 7C3

100 0.0 0.0

0.0 100 0.0

0.0 0.0 100

SNR = 20dB

SNR=10dB

INDEX:
99.8

SELECTED

7ti* 7t2* 7t3*

<
P U2
ü
< 7C3

99.5 0.3 0.2

0.0 100 0.0

0.0 0.0 100

INDEX:
98.8

SELECTED

7li* 7t2* 7C3*

<
P "2
U
■< 7t3

99.1 0.6 0.3

1.0 98.3 0.7

0.4 0.4 99.1

INDEX:
99.9

SELECTED

71,* 7l2* 7C3*

u
"< 7t3

99.8 0.0 0.2

0.0 100 0.0

0.0 0.0 100

SNR = 15 dB

SNR = 5dB

INDEX:
99.5

SELECTED
7t,* 7I2* 7[3*

<
P %2
U
< 7C3

99.2 0.2 0.5

0.3 99.6 0.1

0.2 0.1 99.7

INDEX:
95.3

SELECTED
7t,* 7E2* 7Ü3*

P n2
H
U
-< 7t3

95.2 2.5 2.3

2.0 96.1 1.9

3.3 2.2 94.6

SNR = 0 dB SNR = -5 dB

INDEX:
75.3

SELECTED
Tti* 7t2* 7t3*

<

u
< 7t3

76.7 10.0 13.3

10.4 76.5 13.1

14.1 13.2 72.7

SNR = -10 dB

SNR = -20 dB

INDEX:
39.4

SELECTED
71,* 7C2* 7t3*

<
P U2

•< 7C3

41.6 30.4 28.0

34.5 38.8 26.8

31.9 30.2 37.9

SNR = -15 dB

INDEX:
56.0

SELECTED

TCi* 7t2* 7C3*

<
P n2
U
•< 7C3

55.5 22.5 22.0

22.8 55.5 21.6

21.0 22.1 56.9

Table B-9. Confusion Matrices for Simulated Feature Trials (Three-Class, Fifty-Features):
MSNN. (see App B cover page for table description)

117

INDEX:
89.4

SELECTED
71, * 7C2* 71,*

u
< 7I3

90.4 8.1 1.6

5.6 92.5 1.9

7.1 7.7 85.2

SNR = 20dB

INDEX:
85.8

SELECTED

111* 7l2* 7E,*

< Tl3

87.3 1.0 11.7

4.7 85.3 10.1

14.9 0.4 84.7

SNR = 10 dB

INDEX:
62.6

SELECTED
3t,* 7t2* JI3*

i "2
u
< 7t3

54.8 18.9 26.4

32.1 53.1 14.9

14.2 5.9 79.9

SNR = 0 dB

INDEX:
42.7

SELECTED
7tl* 7t2* 7C,*

i *2
u
< 7t3

44.9 30.9 24.2

29.9 44.1 26.0

28.3 32.7 39.0

SNR = -10 dB

INDEX:
35.7

SELECTED
Jtl* 7t2* 7t,*

u

63.7 17.8 18.5

60.6 19.5 20.0

58.3 17.6 24.0

SNR = -20 dB

INDEX:
83.9

SELECTED
Jtl* 7C2* 7t,*

i "2
< Tt3

82.9 1.3 15.8

2.2 77.4 20.4

4.0 4.7 91.3

SNR=15dB

INDEX:
80.4

SELECTED

111* Til* 7E,*

< 7i3

83.9 7.0 9.2

8.6 83.0 8.4

14.4 11.2 74.4

SNR = 5dB

INDEX:
52.2

SELECTED
71] * 7t2* 7t,*

< 7t3

47.2 25.5 27.3

17.8 57.2 25.0

19.5 28.4 52.2

SNR = -5dB

INDEX:
41.8

SELECTED 1

Tti* 7t2* 7t3* 1

i n2
u
< JI3

44.7 28.4 27.0 1

28.2 37.3 34.5 1

28.6 28.1 43.3 1

SNR = -15 dB

Table B-10. Confusion Matrices for Simulated Feature Trials (Three-Class, Three-Features):
MSNN Mod 1. (see App B cover page for table description)

118

INDEX:
96.0

SELECTED

jti* 7I2* 713*

| *2

o
< 7I3

97.4 2.2 0.5

3.0 96.2 0.8

2.6 3.0 94.4

INDEX:
96.3

SELECTED

7t!* 7I2* %*

1 "2
U
<! 7i3

96.3 1.5 2.3

1.8 97.7 0.5

2.8 2.4 94.8

SNR = 20 dB SNR = 15 dB

INDEX:
97.4

SELECTED

71] * 7l2* 1X3*

i "2
< 7t3

96.6 0.8 2.6

0.5 97.4 2.2

0.7 1.0 98.3

INDEX:
94.7

SELECTED

7ti* 7I2* ' 7I3*

i "2
u
< 7I3

96.2 0.7 3.1

5.2 92.6 2.2

3.6 1.1 95.3

SNR = 10 dB SNR = 5 dB

INDEX:
88.6

SELECTED

7Ii* 7t2* 7t3*

i "2
< 7t3

94.1 2.6 3.4

7.0 87.1 5.9

7.2 8.4 84.4

INDEX:
67.4

SELECTED

7ti* 7t2* 713*

<
P "2 H
U
<! 7i3

57.8 20.8 21.4

15.9 68.7 15.4

11.5 12.7 75.8

SNR = 0 dB SNR = -5dB

INDEX:
55.7

SELECTED

Tti* 7t2* 7I3*

<
P n2
U
< 7I3

39.6 30.0 30.4

15.1 57.9 27.0

10.5 20.0 69.5

SNR = -10 dB

SNR = -20 dB

INDEX:
43.1

SELECTED

71]* 7t2* %*

<
P n2 H
U
< 7t3

35.7 29.2 35.0

23.4 45.4 31.2

22.6 29.0 48.3

INDEX:
47.5

SELECTED

7ti* 7l2* 7C3*

i "2
u
< 7I3

46.3 24.2 29.4

25.2 44.1 30.7

24.6 23.4 52.0

SNR = -15 dB

Table B-ll. Confusion Matrices for Simulated Feature Trials (Three-Class, Ten-Features):
MSNN Mod 1. (see App B cover page for table description)

119

INDEX:
100

SELECTED

Ttl* JI2* 7t3*

■< 7t3

100 0.0 0.0

0.0 100 0.0

0.0 0.0 100

INDEX:
100

SELECTED
7t]* 7t2* 7t3*

< 7t3

100 0.0 0.0

0.0 100 0.0

0.0 0.0 100

SNR = 20 dB SNR = 15 dB

INDEX:
100

SELECTED

71] * %2* 7E3*

< 7t3

99.9 0.0 0.0

0.0 100 0.0

0.0 0.0 100

INDEX:
100

SELECTED

71]* TC2* 7I3*

■< 7t3

100 0.0 0.0

0.0 100 0.0

0.1 0.0 99.9

SNR = 10 dB SNR = 5 dB

INDEX:
99.7

SELECTED

Tti* 1-2* 7I3*

< 7t3

99.8 0.0 0.2

0.2 99.8 0.0

0.4 0.1 99.5

SNR = 0dB

INDEX:
96.6

SELECTED
Tti* 7t2* TÜ3*

< 7t3

94.8 2.1 3.1

0.6 97.5 1.8

1.1 1.5 97.4

SNR = -5 dB

INDEX:
66.2

SELECTED
Tti* Tt2* TC3*

u
•< 713

80.7 10.1 9.1

14.7 69.5 15.9

31.1 20.5 48.4

SNR = -10 dB

SNR = -20 dB

INDEX:
46.9

SELECTED
7t]* 7t2* 7t3*

<
D Tt2
H
U
< Tt3

37.1 41.0 21.9

20.8 59.5 19.7

20.2 35.8 44.0

INDEX:
53.4

SELECTED
7ti* 7t2* 7I3*

< 7t3

55.8 20.3 23.9

33.6 42.9 23.6

24.2 14.3 61.4

SNR = -15 dB

Table B-12. Confusion Matrices for Simulated Feature Trials (Three-Class, Fifty-Features):
MSNN Mod 1. (see App B cover page for table description)

120

INDEX:
99.5

SELECTED

7ti* 7t2* 7I3*

<
P 7C2

O
< 7C3

98.9 0.1 1.0

0.1 99.9 0.0

0.3 0.1 99.7

INDEX:
96.8

SELECTED
7t, * 7t2* 7t3*

<
g 7t2

■< 7t3

98.7 0.0 1.3

0.0 96.2 3.8

0.8 3.7 95.5

SNR = 20 dB SNR=15dB

INDEX:
93.2

SELECTED

Tti* 7t2* 7I3*

<
P n2
H
U
•< 7t3

89.0 0.8 10.3

0.7 98.7 0.6

6.7 1.5 91.9

INDEX:
87.1

SELECTED

7t,* 7t2* 7l3*

<
P "2
U
<! 7t3

82.8 5.3 11.8

1.7 95.7 2.5

7.4 9.8 82.8

SNR = 10 dB SNR = 5 dB

INDEX:
63.2

SELECTED

7t,* 7t2* 7t3*

1 "2
< 7t3

55.5 23.2 21.3

31.1 59.2 9.7

15.4 9.8 74.8

INDEX:
54.7

SELECTED

7t,* 7I2* 7t3*

43.6 28.4 28.1

16.5 61.6 21.9

13.7 27.3 59.0

SNR = 0 dB SNR = -5 dB

INDEX:
48.0

SELECTED
7t,* 7t2* 7I3*

<
P "2
U
< 7t3

56.6 19.3 24.1

28.2 44.8 27.0

28.9 28.7 42.4

SNR = -10 dB

SNR = -20 dB

INDEX:
42.2

SELECTED

7t,* 7t,* 7t3*

U
< 7t3

45.7 24.8 29.5

31.5 31.7 36.8

28.5 22.2 49.3

INDEX:
36.5

SELECTED

7t,* 7t2* 7t3*

i *2
< 7I3

32.7 38.0 29.3

32.9 43.2 23.9

31.5 35.0 33.6

SNR = -15 dB

Table B-13. Confusion Matrices for Simulated Feature Trials (Three-Class, Three-Features):
MSNN Mod 2. (see App B cover page for table description)

121

INDEX:
100

SELECTED
71]* 7t2* 7t3*

-< 7t3

100 0.0 0.0

0.0 100 0.0

0.0 0.0 100

SNR = 20 dB

SNR = 10 dB

SNR = 0 dB

SNR = -10 dB

SNR = -20 dB

INDEX:
99.4

SELECTED

7C]* 7t2* 7C3*

<
S3 Th
H
ü
"< Tt3

99.3 0.4 0.3

0.5 99.4 0.1

0.3 0.3 99.4

INDEX:
90.7

1 SELECTED
1 TEi* 7T2* 7C3*

< 7t3

1 93.8 3.4 2.8

1 3.2 90.5 6.3

6.2 5.9 87.9

INDEX:
53.4

SELECTED
Tti* 7C2* 7X3*

<

■< 7t3

45.7 28.6 25.7

20.9 56.5 22.6

18.4 23.4 58.1

INDEX:
35.0

SELECTED
71] * 7t2* 7C3*

U
■< 7t3

34.3 31.8 33.8

30.7 36.4 32.9

33.3 32.3 34.4

INDEX:
99.9

SELECTED
7ti* 7I2* %*

1 ^
U
■< 7t3

99.9 0.0 0.1

0.0 99.8 0.2

0.1 0.0 99.9

SNR =15 dB

SNR = 5 dB

SNR = -5 dB

SNR = -15 dB

INDEX:
98.2

SELECTED

Tti* 7E2* %*

< 7I3

98.3 0.9 0.7

0.6 98.4 1.0

1.1 1.0 97.8

INDEX:
67.9

SELECTED

Til* 7t2* 7C3*

u
•< 7C3

61.8 20.2 18.0

17.2 68.8 13.9

14.9 12.2 73.0

INDEX:
42.0

SELECTED
7tj* 7C2* 7t3*

< 7C3

45.2 30.5 24.3

31.3 40.9 27.8

29.8 30.4 39.8

Table B-14. Confusion Matrices for Simulated Feature Trials (Three-Class, Ten-Features): MSNN
Mod 2. (see App B cover page for table description)

122

INDEX:
100

SELECTED
71,* 7t2* 7I3*

<
P 712
H
U
<; 7t3

100 0.0 0.0

0.0 100 0.0

0.0 0.0 100

INDEX:
99.9

SELECTED

TCj* 7t2* %*

< %

99.8 0.0 0.2

0.0 100 0.0

0.0 0.0 100

SNR = 20 dB SNR = 15 dB

INDEX:
99.7

SELECTED

Tti* 7t2* 7C3*

1 *2
99.7 0.3 0.0

0.2 99.7 0.0

0.2 0.0 99.8

SNR = 10 dB

INDEX:
99.2

SELECTED

TCj* 7l2* 7t3*

99.5 0.3 0.1

0.1 98.7 1.2

0.0 0.4 99.5

INDEX:
99.0

SELECTED

Tti* JI2* 7l3*

J %1

U
< %

98.4 1.1 0.4

0.5 99.2 0.3

0.4 0.3 99.3

SNR = 5 dB

INDEX:
95.6

SELECTED

7Ci* 7t2* Hi*

<
P "2
ü
< 7t3

95.5 1.8 2.6

1.7 96.3 2.0

2.4 2.7 94.9

SNR = 0dB SNR = -5 dB

INDEX:
71.9

SELECTED

7ti* 7l2* JI3*

73.2 12.0 14.8

11.6 74.2 14.2

15.5 16.2 68.2

SNR = -10 dB

SNR = -20 dB

INDEX:
36.3

SELECTED
71, * 7t2* 7t3*

| "2

< 7i3

36.9 35.2 28.0

32.9 39.3 27.8

32.8 34.6 32.7

INDEX:
47.4

SELECTED

Tti* 7t2* ^3*

1 ^
< Ji3

43.9 27.8 28.3

24.5 49.1 26.4

22.6 27.2 50.2

SNR = -15 dB

Table B-15. Confusion Matrices for Simulated Feature Trials (Three-Class, Fifty-Features):
MSNN Mod 2. (see App B cover page for table description)

123

INDEX:
98.5

SELECTED

JIl* 7t2* Jtl*

i *2
< 7i3

99.6 0.3 0.0

0.6 98.7 0.7

0.2 2.5 97.3

SNR = 20 dB

SNR = 10 dB

SNR = 0 dB

SNR = -10 dB

SNR = -20 dB

INDEX:
88.0

SELECTED
ci n2* Ji,*

<
H
O
<! 7I3

80.2 7.3 12.5

1.0 97.7 1.3

7.4 6.4 86.1

INDEX:
61.4

SELECTED
%l* Tt2* JI3*

1 "2
< 7t3

51.6 21.7 26.7

28.0 55.9 16.1

13.7 9.4 76.9

INDEX:
43.6

1 SELECTED

1 Jii* n2* Tt3*

<
£ "2

■< jt3

1 48.0 28.7 23.3

1 27.3 45.8 26.9

28.3 34.7 37.0

INDEX:
36.0

SELECTED

Jtl* 7l2* 7I3*

<
g 7I2

29.7 39.9 30.3

31.5 45.2 23.3

28.8 38.1 33.1

INDEX:
96.0

SELECTED

Ttl* 7t2* JI3*

l "2
u
<! 7C3

97.1 0.0 2.9

0.0 96.5 3.5

0.7 4.9 94.4

SNR = 15 dB

SNR = 5 dB

SNR = -5 dB

SNR = -15 dB

INDEX:
79.8

SELECTED
JIl* 7I2* Tfcj*

74.1 11.9 14.0

8.8 87.4 3.9

8.4 13.7 77.9

INDEX:
49.4

SELECTED
Ttl* TC2* %*

£ "2
< 7t3

46.2 25.4 28.4

23.2 52.2 24.6

20.6 29.5 49.9

INDEX:
40.2

SELECTED

7tl* %2* 7t3*

J 7l1

| *2

u
<! 7i3

40.0 28.4 31.6

29.7 34.5 35.8

30.8 23.3 46.0

Table B-16. Confusion Matrices for Simulated Feature Trials (Three-Class, Three-Features):
MSNN Mod 3. (see App B cover page for table description)

124

INDEX:
99.2

SELECTED

Tt,* 7I2* 7t3*

| *2

u
•< rc3

98.1 0.0 1.9

0.3 99.7 0.0

0.1 0.0 99.9

INDEX:
99.2

SELECTED

7t,* 7I2* 7t3*

i "2
< %

100 0.0 0.0

1.1 98.9 0.0

0.6 0.6 98.8

SNR = 20 dB SNR = 15 dB

INDEX:
97.1

SELECTED

Tti* 7t2* %*

<
P "2 H
U

97.7 2.1 0.2

1.6 95.9 2.5

1.1 1.2 97.7

SNR =10 dB

INDEX:
79.0

SELECTED

7t,* 7I2* 7t3*

P 7C2

ü

84.5 6.7 8.8

9.4 79.9 10.6

15.4 12.1 72.4

INDEX:
90.5

SELECTED

7t,* 7t2* 7l3*

<
P "2 H
U
< 7t3

92.6 2.2 5.2

4.8 93.1 2.1

8.6 5.6 85.8

SNR = 5 dB

INDEX:
59.5

SELECTED

Tti* 7t2* 7t3*

1 "2
< TC3

51.4 20.5 28.1

21.2 57.4 21.4

17.5 12.6 69.8

SNR = 0 dB SNR = -5 dB

INDEX:
46.0

SELECTED

71, * 7t2* 7X3*

<
P %2 H
U
■< 7t3

39.5 33.1 27.3

24.1 50.4 25.4

24.5 27.3 48.2

SNR = -10 dB

SNR = -20 dB

INDEX:
34.7

SELECTED

7t,* 7t2* 7I3*

<
P %2 H
ü
< JI3

29.1 38.6 32.2

26.9 41.0 32.1

28.4 37.6 34.1

INDEX:
39.2

SELECTED
7t,* 7t2* 7t3*

<
P "2 H
U
< 7t3

39.4 36.6 23.9

29.8 43.5 26.7

29.3 35.9 34.8

SNR = -15 dB

Table B-17. Confusion Matrices for Simulated Feature Trials (Three-Class, Ten-Features):
MSNN Mod 3. (see App B cover page for table description)

125

INDEX:
100

SELECTED
Tti* 7t2* 7t3*

i *2
< 7C3

100 0.0 0.0

0.0 100 0.0

0.0 0.0 100

SNR = 20 dB

SNR = 10 dB

SNR = 0 dB

SNR = -10 dB

SNR = -20 dB

INDEX:
98.4

SELECTED

Tti* 7t2* 7C3*

| "2

u
< 7t3

97.2 0.7 2.2

1.4 98.1 0.5

0.0 0.1 99.9

INDEX:
91.5

SELECTED
Tti* 7t2* 7C3*

■< 7I3

89.4 4.4 6.3

4.2 93.5 2.3

4.9 3.6 91.5

INDEX:
56.7

SELECTED 1
Tti* 7C2* 7C3* |

Ö 7t2

■< 7t3

60.1 18.6 21.2

22.2 59.5 18.3 1

25.9 23.6 50.5 |

INDEX:
36.1

SELECTED
Tti* 7t2* 7C3*

| *2

u
■< 7t3

35.3 37.0 27.6

32.4 41.4 26.2

32.4 36.1 31.5

INDEX:
98.7

SELECTED 1
7Ii* Ttz* 7t3* 1

| "2

< TI3

99.8 0.0 0.2

3.2 96.2 0.6

0.0 0.0 100 I

SNR = 15 dB

SNR = 5 dB

SNR = -5 dB

SNR = -15 dB

INDEX:
97.7

SELECTED

7t] * 7t2* 7C3*

i *2
■< 7t3

96.9 2.1 1.0

1.7 97.2 1.1

0.6 0.2 99.1

INDEX:
78.4

SELECTED 1
Tti* Tt2* 7t3* 1

l *2
u
<! 7t3

79.4 7.2 13.4

9.9 77.0 13.1

13.0 8.3 78.6 1

INDEX:
43.8

SELECTED
Tti* 7I2* 7t3*

i "2
-< 7C3

44.7 27.3 28.0

30.3 42.0 27.7

28.3 27.1 44.6

Table B-18. Confusion Matrices for Simulated Feature Trials (Three-Class, Fifty-Features):
MSNN Mod 3. (see App B cover page for table description)

126

INDEX:
75.2

SELECTED

TCi* 7C2* 7Ü3*

H- *

u
< 7C3

61.8 38.1 0.0

35.9 63.8 0.4

0.0 0.0 100

SNR = 20 dB

SNR=10dB

SNR = 0 dB

Rxl

SNR = -20 dB

INDEX:
33.3

SELECTED

TCj* 7t2* 7t3*

u
< 7i3

33.5 30.0 36.5

34.3 29.8 35.8

33.4 30.0 36.6

INDEX:
33.3

SELECTED
71,* 7t2* 7C3*

<
P 7C2

O
< %

37.4 30.9 31.7

36.7 31.6 31.7

38.3 30.8 30.9

INDEX:
71.3

SELECTED

7Ci* 7t2* 7t3*

<
P 712

u
•< 7C3

57.4 42.5 0.1

43.1 56.5 0.4

0.0 0.0 100

INDEX:
67.9

SELECTED

7t!* 7t2* 7t3*

H- ">

<
g 7I2

U -
< 7t3

54.2 44.8 1.0

47.5 49.8 2.7

0.1 0.2 99.7

INDEX:
44.6

SELECTED

TCj* 7t2* %*

H- *

< 7t3

35.9 35.7 28.4

34.8 35.2 30.0

18.6 18.7 62.6

SNR = 15 dB

SNR = 5 dB

SNR = -5 dB

SNR = -15 dB

No Noise

INDEX:
60.2

SELECTED

TEi* 7C2* TC3*

< 7t3

44.0 40.6 15.4

41.0 42.9 16.1

4.1 2.3 93.6

INDEX:
35.9

SELECTED

7ti* 7l2* 7C3*

HH ">

<
g 7C2

< 7t3

34.0 30.6 35.4

33.2 33.2 33.7

30.9 28.6 40.5

INDEX:
33.6

SELECTED
71;* 7t2* 7C3*

HH ">

l "2
u
■< 7C3

31.7 32.7 35.6

32.1 32.3 35.6

31.1 32.2 36.7

INDEX:
33.3

SELECTED

7Ci* 7t2* 7Ü3*

u
< 7t3

100 0.0 0.0

100 0.0 0.0

100 0.0 0.0

Table B-19. Confusion Matrices for Simulated Modulated Signals (Three-Class, Fifty-One Features):
Statistical Classifier, (see App B cover page for table description)

127

INDEX:
79.4

1 SELECTED

1 Hl* 7C2* 7l3*

V
< 7l3

1 68.0 32.0 0.0

1 29.9 70.1 0.0

0.0 0.0 100

SNR = 20dB

SNR = 10 dB

SNR = 0dB

SNR = -10 dB

SNR = -20 dB

INDEX:
70.9

SELECTED

7tl* 7t2* 7t3*

< 7I3

56.4 43.6 0.1

43.3 56.5 0.2

0.1 0.2 99.8

INDEX:
50.4

SELECTED
-iii* iti* rc3*

<

u
■< 7I3

40.3 42.0 17.7

38.7 43.2 18.1

13.8 18.4 67.8

INDEX:
33.6

SELECTED

Jtl* 7C2* 7I3*

ü
■< 7C3

36.2 32.3 31.5

36.4 30.9 32.7

34.0 32.2 33.7

INDEX:
33.3

SELECTED
Ttl* 7l2* 7I3*

<
S3 7t2
H
U
•< 7C3

34.5 33.2 32.2

34.8 34.1 31.1

34.6 34.0 31.4

INDEX:
74.7

SELECTED
7ti* Tt2* 7E3*

U

60.0 40.0 0.0

35.6 64.3 0.0

0.0 0.0 100

SNR = 15 dB

SNR = 5 dB

SNR = -5 dB

SNR = -15 dB

No Noise

INDEX:
65.7

SELECTED

Ttl* 7t2* 7t3*

•< 7t3

51.2 45.5 3.3

44.5 50.6 4.9

1.8 2.9 95.3

INDEX:
37.0

SELECTED
Jtl* TC2* Jt3*

< 7t3

34.5 34.5 31.0

35.4 34.1 30.6

29.5 28.0 42.4

INDEX:
33.3

SELECTED
7ti* Jt2* 7I3*

u
■< 7I3

33.7 32.0 34.4

34.0 32.1 33.9

33.0 32.8 . 34.2

INDEX:
33.3

SELECTED
Tti* TC2* %*

| "2
u
<! 7t3

40.0 0.0 60.0

40.0 0.0 60.0

40.0 0.0 60.0

Table B-20. Confusion Matrices for Simulated Modulated Signals (Three-Class, Twenty-Six Features):
Statistical Classifier, (see App B cover page for table description)

128

INDEX:
78.8

SELECTED

7Ii* TC2* TC3*

<
g 7t2

< 7I3

68.0 32.0 0.0

31.7 68.3 0.0

0.0 0.0 100

INDEX:
75.4

SELECTED

7lj* 7t2* 7E3*

i *2
65.5 34.3 0.2

39.2 60.7 0.1

0.0 0.0 100

SNR = 20dB SNR =15 dB

INDEX:
73.0

SELECTED

.TCj* TC2* 7C3*

< 713

61.9 37.5 0.6

41.7 57.7 0.6

0.4 0.1 99.4

INDEX:
65.9

SELECTED

Tti* TE2* 7t3*

u
•< n3

51.4 45.8 2.8

42.7 53.6 3.7

3.0 4.3 92.7

SNR=10dB SNR = 5dB

INDEX:
51.7

SELECTED

Ttl* 7t2* Tts*

43.0 42.6 14.5

42.7 43.5 13.8

15.1 16.2 68.7

INDEX:
38.3

SELECTED

TCl* 7l2* TC3*

< TC3

37.1 37.0 26.0

37.5 35.9 26.6

27.8 30.3 41.9

SNR = 0dB SNR = -5 dB

INDEX:
34.7

SELECTED
7li* 7t2* Tt3*

< 713

34.2 31.6 34.3

33.0 32.3 34.7

31.3 31.2 37.5

SNR = -10 dB

INDEX:
33.1

SELECTED

7tl* 7l2* TC3*

<! 7C3

31.6 34.7 33.7

31.9 35.9 32.2

32.3 35.9 31.7

INDEX:
33.5

SELECTED
7t, * 7I2* 7C3*

l *2
O
< TC3

31.6 33.7 34.7

32.0 33.8 34.2

30.8 34.0 35.2

SNR = -15 dB

INDEX:
57.0

SELECTED

Ttl* TC2* 7t3*

< Tc3

45.7 54.3 0.0

54.7 45.3 0.0

0.0 20.0 80.0

SNR = -20 dB No Noise

Table B-21. Confusion Matrices for Simulated Modulated Signals (Three-Class, Eleven-Features):
Statistical Classifier, (see App B cover page for table description)

129

INDEX:
78.7

SELECTED

Ttl* 7I2* 7T3*

i *2
u
< 7I3

65.6 13.6 4.9

11.0 71.4 7.9

0.4 0.6 99.0

SNR = 20 dB

SNR = 10 dB

SNR = 0 dB

SNR = -10 dB

SNR = -20 dB

INDEX:
40.6

SELECTED
71] * 7t2* 7I3*

i n2
< 713

24.0 23.6 31.3

22.9 25.0 31.7

12.4 12.2 72.8

INDEX:
30.1

SELECTED
71,* 7t2* 7l3*

-< Tt3

27.7 34.2 26.4

28.1 34.8 25.9

27.2 24.6 27.9

INDEX:
29.6

SELECTED
7t!* 7l2* 7t3*

3 7T2

U
-0 7l3

15.1 24.0 50.1

15.6 23.4 50.0

15.6 23.2 50.4

INDEX:
71.7

SELECTED

7ti* 7I2* 7I3*

i "2
63.3 16.0 9.0

23.8 53.3 10.8

0.5 1.2 98.3

INDEX:
63.8

SELECTED

7t!* 7t2* 7t3*

<
ö 7I2

U
■< Jl3

47.9 26.4 14.4

27.6 47.0 15.2

1.1 2.3 96.6

SNR = 15 dB

SNR = 5 dB

SNR = -5 dB

SNR = -15 dB

No Noise

INDEX:
50.7

SELECTED

7ti* 7t2* TE3*

l "2
■<« 7t3

27.7 25.6 35.3

22.9 31.0 35.2

2.9 3.6 93.4

INDEX:
33.1

SELECTED
Jti* 712* TI3*

i "2
u
•< 7t3

25.0 29.8 32.6

24.5 29.9 32.8

23.7 25.3 44.2

INDEX:
31.2

SELECTED

Ttj* 7l2* 7l3*

l "2
■< 7C3

25.0 20.3 47.6

24.1 20.2 48.9

24.1 20.7 48.5

INDEX:
92.9

SELECTED
7ii* jr2* %*

| "2

u
■<! 7I3

91.4 5.2 2.6

7.0 87.2 4.6

0.1 0.0 99.9

Table B-22. Confusion Matrices for Simulated Modulated Signals (Three-Class, Fifty-One Features):
Perceptron. (see App B cover page for table description)

130

INDEX:
74.2

SELECTED

111* Kl* n3*

u
< 7l3

55.4 19.4 5.3

11.7 69.0 5.9

0.1 1.8 98.1

SNR = 20dB

SNR = 10 dB

SNR = 0dB

SNR = -10 dB

SNR = -20 dB

INDEX:
61.4

SELECTED

Jii* n2* %*

<
g 7t2

ü
< 7l3

24.0 43.5 16.3

8.1 66.0 14.4

0.4 5.4 94.2

INDEX:
40.0

SELECTED

jii* 7t2* n-i*

< 7t3

28.5 28.5 21.3

26.5 30.5 22.4

14.8 20.5 61.1

INDEX:
28.6

SELECTED

7li* Jt2* t3*

<

< 7t3

18.4 21.9 44.1

18.5 21.7 44.5

18.6 21.5 45.7

INDEX:
30.4

SELECTED

7t,* 7t2* JI3*

< %

22.8 27.8 40.7

23.0 27.7 40.3

22.8 27.7 40.6

INDEX:
69.3

SELECTED

71,* 7l2* n3*

u
-< 7t3

62.6 16.1 9.8

29.1 , 46.4 14.0

0.2 1.1 98.7

SNR=15dB

SNR = 5 dB

SNR = -5 dB

SNR = -15 dB

No Noise

INDEX:
51.8

SELECTED
7t,* 7t2* 7t3*

<
g %2
U

39.3 20.5 30.9

31.1 26.3 33.9

4.1 5.9 89.9

INDEX:
30.3

SELECTED

7t,* 7t2* 7t3*

< n3

18.5 19.1 43.3

19.0 19.2 43.2

18.0 16.2 53.1

INDEX:
30.4

SELECTED
7t! * 7t,* 7t3*

g 7t2

•< 7t3

35.7 24.9 30.4

35.6 25.2 30.3

36.0 25.0 30.4

INDEX:
87.7

SELECTED
1 7tj* 7t2* 7t3*

! "2

■< 7t3

79.5 10.0 4.5

I 6.6 83.9 5.4

1 0.0 0.2 99.8

Table B-23. Confusion Matrices for Simulated Modulated Signals (Three-Class, Twenty-Six Features):
Perceptron. (see App B cover page for table description)

131

INDEX:
55.0

SELECTED

Ttl* 7I2* Jl3*

| *2

< 7t3

39.5 7.8 0.8

10.3 30.2 0.4

4.8 0 95.2

SNR = 20 dB

INDEX:
56.1

SELECTED

71]* 7I2* 7l3*

u
< 7t3

24.6 29.7 38.6

13.6 46.1 35.0

1.1 1.8 97.1

SNR = 10 dB

INDEX:
41.2

1 SELECTED

1 JCi* 7I2* 7k)*

<

u
•< 7t3

| 30.6 23.3 37.5

1 30.2 23.8 37.3

1 15.5 12.5 69.3

SNR = 0dB

INDEX:
30.4

SELECTED
TCj* 7tz* 7C,*

o
< 7t3

10.5 28.2 51.3

10.5 28.7 51.0

10.4 28.7 51.8

SNR = -10 dB

1 INDEX:
| 29.9

SELECTED

TCi* 7l2* 7I3*

i %2
ü
■< 7I3

11.4 37.1 40.9

11.0 37.4 41.0

11.2 37.2 40.9

SNR = -20 dB

INDEX:
58.2

SELECTED
7li* 712* TC3*

4 ni 47.1 9.9 8.0

25.6 29.7 8.3

1.6 0.6 97.8

SNR=15dB

INDEX:
52.3

SELECTED

TCi* 7t2* 7t3*

i "2
-< 7C3

24.1 38.2 22.4

18.5 46.1 21.4

3.1 9.7 86.7

SNR = 5dB

INDEX:
29.6

SELECTED I
TCi* 71^* 7I3* |

< 7l3

10.6 30.5 42.2

10.5 30.8 42.5 1

8.6 32.3 47.5 |

SNR = -5 dB

INDEX:
27.8

SELECTED
7Ci* 712* 7t3* |

i *2
-< 7t3

21.4 23.9 37.2 1

21.3 23.9 37.2 1

21.3 23.5 37.9 |

SNR = -15 dB

INDEX:
83.8

SELECTED
71] * 7C2* 7t3*

< 7C3

74.1 4.1 19.5

7.3 78.1 6.2

0.7 0.0 99.3

No Noise

Table B-24. Confusion Matrices for Simulated Modulated Signals (Three-Class, Eleven-Features):
Perceptron. (see App B cover page for table description)

132

INDEX:
89.0

SELECTED

7t,* 7t2* %*

U
< 7I3

86.1 13.9 0.0

19.1 80.9 0.0

0.0 0.0 100

SNR = 20dB

SNR=10dB

SNR = 0dB

SNR = -10 dB

INDEX:
33.7

SELECTED

7ti* 7t2* %*

<
P Jl2

U
< TC3

31.7 33.7 34.6

32.4 34.1 33.4

31.8 32.7 35.5

SNR = -20 dB

INDEX:
82.6

SELECTED

7ti* 7t2* 7t3*

<
g 712

< 7C3

75.0 25.0 0.0

27.0 73.0 0.0

0.1 0.1 99.8

INDEX:
76.1

SELECTED

7t!* 7t2* 7t3*

<
D 7C2
H
<J
< 7I3

67.7 32.3 0.1

38.7 61.2 0.1

0.2 0.4 99.5

INDEX:
56.3

SELECTED
7tj* 7t2* 7I3*

U
<! 7I3

44.0 43.7 12.3

42.1 44.9 13.0

10.6 9.4 80.0

INDEX:
34.7

SELECTED
7ti* 7t2* 7t3*

3 7I2

U
■< 7t3

33.4 34.4 32.2

34.1 34.8 31.1

31.5 32.7 35.8

SNR = 15 dB

INDEX:
70.4

SELECTED

7t] * 7t2* 7I3*

<
5 7t2

U
< 7t3

55.4 42.9 1.7

38.5 58.8 2.6

1.1 1.9 96.9

SNR = 5 dB

INDEX:
42.5

SELECTED

7ti* 7t2* TC3*

i ^
< 7t3

35.7 37.0 27.2

34.5 36.7 28.9

21.3 23.5 55.2

SNR = -5 dB

INDEX:
33.5

SELECTED
Tti* 712* 7t3*

35.0 34.6 30.4

34.4 35.0 30.6

35.2 34.4 30.4

SNR = -15 dB

INDEX:
94.8

SELECTED

7t]* 7l2* TC3*

<

< Tt3

93.7 6.3 0.0

9.2 90.8 0.0

0.0 0.1 99.9

No Noise

Table B-25. Confusion Matrices for Simulated Modulated Signals (Three-Class, Fifty-One Features):
MSNN. (see App B cover page for table description)

133

INDEX:
86.0

SELECTED
Tlj* 712* 7I3*

i *2
< %

76.9 23.1 0.0

18.9 81.1 0.0

0.0 0.0 100

SNR = 20dB

SNR=10dB

SNR = 0 dB

SNR = -10dB

SNR = -20 dB

INDEX:
34.8

SELECTED
7Il* JI2* 7I3*

l "2
u
•< 7I3

34.4 32.4 33.2

34.4 33.1 32.5

32.0 31.1 37.0

INDEX:
33.1

SELECTED

7ll* TC2* %*

l *2
u

36.8 32.9 30.3

37.1 32.8 30.1

36.5 33.9 29.7

INDEX:
81.5

SELECTED

Jii* 7t2* %*

l *2
72.6 27.4 0.0

27.9 72.1 0.0

0.0 0.1 99.9

INDEX:
77.7

SELECTED

71]* 7Ü2* %*

l "2
u
«Ü 7t3

70.4 29.4 0.2

36.7 63.0 0.3

0.2 0.1 99.7

INDEX:
56.2

SELECTED

Jtl* 7t2* 7l3*

l "2
u
< 7t3

44.5 42.2 13.4

41.6 44.9 13.5

10.4 10.5 79.2

SNR=15dB

SNR = 5 dB

SNR = -5 dB

SNR = -15 dB

No Noise

INDEX:
69.8

SELECTED

Jii* 7x2* %*

<
O 7l2

ü
< 7I3

57.7 41.4 1.0

41.8 56.8 1.5

2.4 2.8 94.8

INDEX:
41.7

SELECTED
7t]* 7I2* 7t3*

l "2
36.5 37.2 26.3

35.5 36.6 28.0

22.6 25.5 51.9

INDEX:
33.4

SELECTED
Tti* TC2* 7t3*

< 7t3

31.6 33.8 34.6

32.3 32.8 34.9

32.7 31.4 35.8

INDEX:
93.8

SELECTED
TCi* 7t2* %*

l "2
<! 7I3

92.5 7.5 0.0

11.1 88.9 0.0

0.0 0.0 100

Table B-26. Confusion Matrices for Simulated Modulated Signals (Three-Class, Twenty-Six Features):
MSNN. (see App B cover page for table description)

134

INDEX:
81.8

SELECTED

7li* 7t2* B3*

75.7 24.2 0.1

30.3 69.6 0.0

0.0 0.0 100

INDEX:
78.7

SELECTED

Jtl* 7t2* B3*

u
•< 7l3

68.5 31.4 0.1

32.2 67.7 0.0

0.2 0.0 99.8

SNR = 20 dB SNR=15dB

INDEX:
75.8

SELECTED

7t) * Jt2* 7I3*

<
P 7t2 H

63.6 35.9 0.5

34.4 65.2 0.4

0.5 0.7 98.7

INDEX:
68.0

SELECTED

7li* 7t2* B3*

<! B3

55.2 40.4 4.4

39.6 56.2 4.2

3.1 4.3 92.6

SNR = 10 dB SNR = 5 dB

INDEX:
55.3

SELECTED

7li* 7l2* B3*

O
•< 7C3

46.9 37.9 15.2

42.9 41.4 15.8

10.5 12.0 77.5

INDEX:
41.1

SELECTED
7tj* 7t2* 7C3*

£ "2
34.7 32.8 32.5

34.6 35.1 30.3

23.4 23.1 53.5

SNR = 0 dB SNR = -5 dB

INDEX:
34.5

SELECTED
Bl* B2* B3*

<
P "2

< B3

30.1 35.8 34.1

29.0 36.1 34.9

29.0 33.6 37.4

SNR = -10 dB

INDEX:
34.2

SELECTED

Bi* B2* B3*

l "2
< 7C3

30.7 36.2 33.2

28.7 39.2 32.1

30.7 36.4 32.9

INDEX:
33.2

SELECTED
Bi* B2* B3*

<
P "2
Ei

< B3

36.6 29.0 34.4

37.7 29.5 32.8

36.4 30.3 33.3

SNR = -15 dB

INDEX:
94.3

SELECTED
Bi* B2* B3*

1 ^
U
< B3

93.6 6.3 0.0

10.6 89.4 0.0

0.0 0.0 100

SNR = -20 dB No Noise

Table B-27. Confusion Matrices for Simulated Modulated Signals (Three-Class, Eleven-Features):
MSNN. (see App B cover page for table description)

135

INDEX:
72.9

SELECTED 1
Tti* 7t2* 7C,* |

•<

<! 7t3

58.7 40.8 0.5 ~|

36.5 63.3 0.2 1

2.0 1.2 96.8 |

SNR = 20 dB

INDEX:
64.1

SELECTED

TCl* 7t2* 71,*

i *2
u
< 7C3

47.3 52.6 0.0

38.6 61.3 0.1

4.7 11.5 83.8

SNR = 10 dB

INDEX:
43.9

SELECTED
Tti* 7t2* 7t,*

u
< 7t3

36.4 42.8 20.8

36.2 42.8 21.0

22.5 25.0 52.5

SNR = 0 dB

INDEX:
33.4

SELECTED
Tti* 7I2* 7t,*

U
■< 7t3

34.4 31.5 34.1

34.9 31.4 33.7

35.7 30.0 34.3

SNR = -10 dB

INDEX:
33.2

SELECTED
7ti* 7I2* 7t,*

g 7t2

u
•< 7t3

33.4 32.2 34.3

34.4 32.2 33.4

33.6 32.3 34.1

SNR = -20 dB

INDEX:
68.7

SELECTED
7tl* 7t2* 7t,*

u
< 7I3

53.9 46.0 0.1

42.4 57.6 0.0

4.2 1.2 94.5

SNR=15dB

INDEX:
55.3

SELECTED

TCl* TC2* 7t,*

l "2
< 7t3

47.6 49.0 3.4

45.7 50.2 4.1

14.5 17.4 68.2

SNR = 5 dB

SNR = -5 dB

1 INDEX:
| 35.0

SELECTED 1
Tti* 7t2* 7t,* |

i %2
u
< 7t3

32.4 37.1 30.5 |

32.8 37.2 30.0 1

29.4 35.3 35.3 |

INDEX:
33.4

SELECTED 1
Tti* Tt2* 7t,* |

<
g 7t2

u
< 7t3

33.6 29.7 36.6 1

33.4 29.9 36.7 1

33.6 29.7 36.7 |

SNR = -15 dB

No Noise

INDEX:
63.0

SELECTED
TCi* Tt2* 7t,*

u
< 7t3

3.7 82.6 13.7

0.9 85.4 13.7

0.0 0.2 99.8

Table B-28. Confusion Matrices for Simulated Modulated Signals (Three-Class, Fifty-One Features):
MSNN Mod 1. (see App B cover page for table description)

136

INDEX:
71.4

SELECTED
jtj* n2* 7C3*

<
3 1t2

U
«s! 7t3

48.1 51.5 0.3

31.3 68.2 0.4

1.3 0.7 97.9

SNR = 20 dB

SNR = 10 dB

SNR = 0 dB

SNR = -10 dB

SNR = -20 dB

INDEX:
66.3

SELECTED

7t]* JI2* 7t3*

O
< 7i3

46.8 52.7 0.4

34.2 65.3 0.5

5.2 8.1 86.7

INDEX:
33.3

SELECTED
71,* 7[2* 7:3*

< 7t3

32.9 32.4 34.6

33.3 32.3 34.4

32.6 32.6 34.8

INDEX:
68.9

SELECTED
7Cj* 7C2* 7C3*

50.5 49.4 0.1

38.1 61.8 0.1

3.4 2.1 94.5

INDEX:
43.6

SELECTED

7Cj* 7l2* 7C3*

1 "2
39.4 42.6 17.9

39.5 42.8 17.7

26.2 25.1 48.7

INDEX:
34.0

SELECTED
71,* 7t2* 7t3*

<
P 7l2

U
<! 7t3

32.3 33.0 34.7

31.7 33.7 34.6

31.2 32.6 36.1

SNR = 15 dB

SNR = 5 dB

SNR = -5 dB

SNR = -15 dB

No Noise

INDEX:
57.7

SELECTED
7C]* 7t2* 7t3*

1 "2
u
< 7t3

49.1 48.6 2.4

47.0 50.2 2.8

11.9 14.3 73.9

INDEX:
35.5

SELECTED
7t, * 7I2* 7X3*

<
P 7C2

U
<! 7t3

33.4 31.5 35.1

32.6 32.5 34.9

30.2 29.3 40.5

INDEX:
33.4

SELECTED
7tj* 7I2* 7I3*

£ "2
u

33.5 33.5 33.0

33.9 33.4 32.7

33.2 33.7 33.1

INDEX:
64.4

SELECTED
7t]* 7t2* 7C3*

0.0 90.6 9.4

0.0 93.1 6.9

0.0 0.0 100

Table B-29. Confusion Matrices for Simulated Modulated Signals (Three-Class, Twenty-Six Features):
MSNN Mod 1. (see App B cover page for table description)

137

INDEX:
72.2

SELECTED

«1* "2* Tfc*

<
O 7l2
H
U
-< rc3

72.2 26.6 1.2

53.1 46.4 0.6

1.6 0.6 97.8

SNR = 20 dB

SNR = 10 dB

SNR = 0 dB

SNR = -10 dB

INDEX:
65.1

SELECTED

7tl* 7t2* TC3*

< %

55.6 44.3 0.1

44.4 55.6 0.0

8.1 7.9 84.1

SNR = -20 dB

INDEX:
47.7

SELECTED
Ttj* 7I2* 7I3*

< 7I3

41.4 41.0 17.6

39.5 42.0 18.6

20.0 20.1 59.9

INDEX:
33.6

SELECTED
7tl* 712* 7l3*

<

-< 7t3

34.2 32.9 32.9

33.5 33.4 33.1

33.7 33.2 33.2

INDEX:
33.3

SELECTED
7tl* 7I2* 7C3*

J %l

| "2

o
< 7t3

29.7 35.6 34.7

29.7 35.6 34.7

30.4 35.1 34.5

INDEX:
71.2

SELECTED 1

TIi* 7E2* 7C3* 1

i *
< Tt3

59.1 40.3 0.6 I

41.9 57.8 0.4 1

1.6 1.6 96.9 |

SNR = 15 dB

SNR = 5dB

SNR = -5 dB

SNR = -15 dB

INDEX:
57.9

SELECTED

7Ii* Tt2* 7I3*

| "2

48.1 50.8 1.1

41.1 57.0 1.9

11.2 20.2 68.7

No Noise

INDEX:
35.7

SELECTED 1

«i* n2* 7i3* 1

< n3

37.6 32.4 30.1

37.7 32.6 29.7 |

30.8 32.2 37.0 |

INDEX:
33.5

SELECTED
7ti* 7t2* 7l3*

< 1*3

32.8 31.3 35.8

32.6 31.4 36.1

33.1 30.6 36.3

INDEX:
45.1

SELECTED

Jti* n2* %*

i *
< 7C3

1.9 16.5 81.6

0.7 33.3 66.0

0.0 0.0 100

Table B-30. Confusion Matrices for Simulated Modulated Signals (Three-Class, Eleven-Features):
MSNN Mod 1. (see App B cover page for table description)

138

INDEX:
87.3

SELECTED
7t,* 7I2* 7t3*

| "2

<! 7I3

79.5 20.5 0.0

16.6 83.0 0.3

0.3 0.3 99.4

SNR = 20 dB

SNR = 10 dB

SNR = 0 dB

SNR = -10 dB

SNR = -20 dB

INDEX:
74.0

SELECTED

7t,* 71,* 7I3*

<
P. "2
U
< 7t3

61.8 37.9 0.3

37.8 62.0 0.2

0.9 0.8 98.4

INDEX:
55.8

SELECTED

7t,* 7t,* 7t3*

<
38.7 46.8 14.4

37.9 47.0 15.1

9.8 8.5 81.8

INDEX:
34.0

SELECTED
7t,* 7t2* 7t3*

<
P 7t2

U
< 7t3

31.2 34.5 34.3

32.3 34.2 33.5

30.0 33.4 36.6

INDEX:
33.5

SELECTED

7t,* 7I2* 7t3*

<
P 7t2
H
U
-< 7t3

34.3 31.7 34.1

34.9 31.6 33.5

34.0 31.3 34.7

INDEX:
81.3

SELECTED

Tti* %i* 7t3*

jS 7t2

u
"< 7t3

70.6 29.3 0.1

24.8 74.9 0.4

0.9 0.7 98.4

SNR = 15 dB

SNR = 5 dB

SNR = -5dB

SNR = -15 dB

No Noise

INDEX:
67.4

SELECTED

7t,* 7t2* 7t3*

|S 7t2

u
< 7t3

52.8 43.7 3.5

41.0 53.7 5.3

1.4 2.8 95.8

INDEX:
41.9

SELECTED

7t,* 71,* 7t3*

| ^2

u
< 7t3

37.1 34.7 28.2

35.7 34.4 29.9

21.8 24.0 54.2

INDEX:
33.1

SELECTED

7t,* 7t2* 7t3*

<
P 7t2
H
U
< 7t3

46.8 27.5 25.7

46.8 27.5 25.7

47.2 27.8 25.0

INDEX:
92.8

SELECTED

7t,* 7t2* 7t3*

<
g 7t2

U
-< 7t3

88.8 11.2 0.0

9.7 90.3 0.0

0.4 0.3 99.3

Table B-31. Confusion Matrices for Simulated Modulated Signals (Three-Class, Fifty-One Features):
MSNN Mod 2. (see App B cover page for table description)

139

INDEX:
83.2

SELECTED
Tti* 7I2* 7I3*

< Tt3

75.7 24.3 0.0

25.8 74.1 0.1

0.0 0.1 99.9

SNR = -10dB

SNR = -20 dB

SNR = 20 dB

SNR = 10 dB

SNR = 0dB

INDEX:
77.7

SELECTED

TCi* 7I2* 7t,*

■< 7t3

68.4 31.6 0.0

34.7 65.2 0.1

0.2 0.3 99.5

INDEX:
55.0

SELECTED
Tli* 7I2* Tt3*

| "2

■< 7C3

48.0 39.8 12.2

46.3 41.7 12.0

12.9 11.9 75.3

INDEX:
34.1

SELECTED
Tti* 7t2* 7C3*

26.6 38.9 34.5

27.2 38.5 34.3

25.7 37.2 37.1

INDEX:
33.2

SELECTED
7ti* 7t2* 7t3*

•< 7t3

39.5 25.4 35.1

40.4 24.7 34.9

39.5 25.2 35.3

INDEX:
80.8

SELECTED
7t]* 7C2* 7I3*

< 7I3

71.3 28.6 0.0

28.7 71.1 0.2

0.0 0.1 99.9

SNR = 15 dB

SNR = 5 dB

SNR = -5 dB

SNR = -15 dB

No Noise

INDEX:
66.0

SELECTED

Tti* Tt2* 7t3*

< 7C3

58.4 38.5 3.1

43.7 51.5 4.9

6.6 5.2 88.2

INDEX:
42.3

SELECTED
7Ci* 7T2* 7t3*

< 7l3

28.3 41.0 30.7

26.5 40.5 33.0

16.6 25.2 58.3

INDEX:
33.5

SELECTED
Tti* Tt2* 7t3*

<

u
•< Tt3

32.8 28.4 38.8

33.1 27.8 39.1

33.8 26.3 39.9

INDEX:
92.2

SELECTED

Tti* Tt2* 7t3*

-< 7t3

84.6 14.9 0.5

7.8 92.1 0.1

0.0 0.1 99.8

Table B-32. Confusion Matrices for Simulated Modulated Signals (Three-Class, Twenty-Six Features):
MSNN Mod 2. (see App B cover page for table description)

140

INDEX:
81.1

SELECTED

71]* 7t2* 7I3*

| "2

< 7t3

68.8 28.3 3.0

24.9 74.8 0.3

0.3 0.0 99.7

INDEX:
77.3

SELECTED

7ti* 7I2* 7T3*

<
g 7E2

<; 7i3

61.6 38.1 0.3

28.9 71.0 0.0

0.6 0.2 99.2

SNR = 20dB SNR = 15 dB

INDEX:
75.1

SELECTED

TU,* 7t2* 7t3*

<
P "2 H
ü

67.9 31.3 0.8

40.1 59.5 0.4

1.0 1.2 97.8

SNR = 10 dB

INDEX:
55.2

SELECTED

Ttj* 7t2* 7t3*

<
P "2 H
U
< 7l3

47.1 36.8 16.1

43.2 40.1 16.7

9.6 12.1 78.3

INDEX:
64.4

SELECTED

7ti* 7C2* 7t3*

<

■«! 7t3

53.9 39.8 6.3

40.8 53.5 5.6

6.0 8.1 85.9

SNR = 5 dB

INDEX:
40.8

SELECTED

Tti* 7l2* 7l3*

<
g 7t2

<: 7c3

28.4 39.2 32.4

29.4 40.3 30.3

20.6 25.6 53.7

SNR = 0 dB SNR = -5 dB

INDEX:
34.2

SELECTED

7t,* 7C2* 7C3*

| "2

ü
■< 7t3

27.1 34.6 38.3

26.9 33.9 39.2

25.5 32.8 41.6

SNR = -10 dB

SNR = -20 dB

INDEX:
33.4 7Ci*

SELECTED

7C2* 7t3*

<
P %2
ü
< 7I3

39.3 25.9 34.8

39.7 25.9 34.5

38.6 26.4 35.0

INDEX:
33.6

SELECTED

%i* 7t2* 7t3*

<
D TC2

U
■< 7C3

24.5 43.3 32.2

23.7 44.2 32.1

24.2 43.7 32.2

SNR = -15 dB

No Noise

INDEX:
91.4

SELECTED

TCj* 7I2* 7C3*

| *2

•< 7t3

84.7 13.1 2.2

10.4 89.5 0.0

0.1 0.0 99.9

Table B-33. Confusion Matrices for Simulated Modulated Signals (Three-Class, Eleven-Features):
MSNN Mod 2. (see App B cover page for table description)

141

INDEX:
88.7

SELECTED
7ti* 7t2* 71-5*

< 7i3

85.9 14.1 0.0

19.5 80.5 0.0

0.0 0.3 99.7

SNR = 20 dB

SNR =10 dB

SNR = 0 dB

SNR = -10 dB

SNR = -20 dB

INDEX:
75.4

SELECTED

Tti* Jl2* 7t3*

i ^
< TC3

66.3 32.0 1.7

38.2 60.4 1.4

0.1 0.4 99.5

INDEX:
56.2

SELECTED

7t,* 7t2* 7t3*

<
3 7t2
H
U
■< 7t3

44.5 42.9 12.6

42.7 44.1 13.2

10.8 9.1 80.1

INDEX:
34.8

SELECTED
7ti* 7t2* 7t3*

u
< 7t3

33.3 35.3 31.3

33.9 35.7 30.4

31.3 33.3 35.4

INDEX:
33.7

SELECTED
Tti* 7t2* 7t3*

1 ^
U
< 7i3

31.8 34.7 33.5

32.6 35.2 32.2

31.8 34.0 34.2

INDEX:
82.5

SELECTED
TCj* 7t2* 7I3*

| "2
U
< 7t3

74.3 25.7 0.0

26.6 73.4 0.0

0.1 0.1 99.8

SNR = 15 dB

SNR = 5 dB

SNR = -5dB

SNR = -15 dB

No Noise

INDEX:
70.2

SELECTED

Tti* 7t2* 7t3*

i *2
54.7 43.5 1.7

38.7 58.6 2.7

1.1 1.8 97.1

1 INDEX:
1 42.3

SELECTED
Tti* 7t2* TC3*

<->
< 7t3

37.1 36.3 26.6

35.9 35.8 28.4

22.1 23.8 54.1

INDEX:
33.6

SELECTED
Tti* 7t2* TC3*

1 *
U
< 7t3

34.9 33.9 31.2

34.4 34.5 31.1

34.9 33.8 31.3

INDEX:
94.0

SELECTED
Tti* 7t2* TC3*

1 "2
< 7t3

94.8 5.2 0.0

12.8 87.2 0.0

0.0 0.1 99.9

Table B-34. Confusion Matrices for Simulated Modulated Signals (Three-Class, Fifty-One Features):
MSNN Mod 3. (see App B cover page for table description)

142

INDEX:
85.8

SELECTED

Jii* 7t2* n3*

u
< n3

77.6 22.3 0.0

20.0 79.9 0.0

0.0 0.0 99.9

SNR = 20 dB

SNR=10dB

SNR = 0 dB

SNR = -10 dB

SNR = -20 dB

INDEX:
33.0

SELECTED

7t!* 7t2* 7t3*

<
g 7t2

U
< 7t3

36.6 32.8 30.6

37.2 32.4 30.4

36.5 33.6 29.9

INDEX:
81.2

SELECTED

Tti* 7t2* 7C3*

U
< %

73.0 27.0 0.0

28.8 71.2 0.0

0.0 0.5 99.5

INDEX:
77.6

SELECTED

7t]* 7t2* IX3*

69.5 30.4 0.2

36.1 63.7 0.2

0.2 0.3 99.5

INDEX:
56.0

SELECTED

Ttl* 7t2* 7t3*

< n3

45.5 42.2 12.3

42.9 44.4 12.7

11.0 10.9 78.1

INDEX:
34.8

SELECTED
7li* 7t2* 7C3*

< 7I3

33.8 33.1 33.1

34.1 33.5 32.5

31.4 31.4 37.2

SNR=15dB

SNR = 5 dB

SNR = -5dB

SNR = -15 dB

No Noise

INDEX:
69.8

SELECTED

Tti* n2* n3*

< TC3

56.1 42.9 0.9

40.6 58.0 1.4

2.1 2.5 95.4

INDEX:
41.7

SELECTED

TCi* 7t2* JC3*

< 713

37.2 36.6 26.2

35.9 36.2 27.9

22.6 25.8 51.7

INDEX:
33.5

SELECTED
Ttl* 7^* 7C3*

31.4 34.1 34.5

31.9 33.4 34.7

32.6 31.7 35.7

INDEX:
93.1

SELECTED

TCi* Tt2* 7I3*

1 "2
ü
< 7i3

92.8 7.2 0.0

13.3 86.7 0.0

0.0 0.1 99.9

Table B-35. Confusion Matrices for Simulated Modulated Signals (Three-Class, Twenty-Six Features):
MSNN Mod 3. (see App B cover page for table description)

143

INDEX:
81.0

1 SELECTED

1 7t!* 7E2* 7E3*

u
■< 7l3

| 73.5 26.3 0.2

I 28.3 71.7 0.0

2.1 0.0 97.9

SNR=10dB

SNR = 0 dB

SNR = -10 dB

SNR = -20 dB

SNR = 20 dB

INDEX:
75.9

SELECTED

7t!* 7E2* 7t3*

< 7t3

63.9 35.8 0.4

34.7 65.0 0.3

0.5 0.7 98.8

INDEX:
55.6

SELECTED
7li* 7t2* 7I3*

U
< 7l3

46.6 38.3 15.1

41.7 42.4 15.9

10.5 11.7 77.8

INDEX:
34.5

SELECTED
7ti* %i* TC3*

| *2
u
•< 7C3

33.5 32.7 33.8

32.4 32.5 35.1

31.3 31.2 37.6

INDEX:
32.8

SELECTED
7Ci* 7t2* 7I3*

i "2
-< 7t3

35.8 30.9 33.3

37.5 30.5 32.0

35.9 31.9 32.2

INDEX:
78.5

SELECTED
7ti* 712* 71,*

•< 7C3

68.4 31.5 0.1

32.4 67.6 0.0

0.2 0.2 99.6

SNR = 15 dB

SNR = 5 dB

SNR = -5 dB

SNR = -15 dB

INDEX:
68.0

SELECTED

7ti* 7^* 7t3*

<
D 7t2

U
■< 7t3

55.3 40.8 3.9

40.1 56.1 3.8

3.1 4.4 92.6

No Noise

INDEX:
40.9

SELECTED
71] * 7l2* 7t3*

l *2
<: 7t3

35.1 32.4 32.5

35.6 34.3 30.0

24.0 22.8 53.3

INDEX:
34.3

SELECTED
Tti* 7I2* 7t3*

< g n2
u
<! 7X3

30.9 36.1 33.0

29.0 39.0 32.0

30.7 36.2 33.1

INDEX:
92.6

SELECTED
7Ci* 7t2* 7I3*

l "2
u
•< 7t3

92.8 7.2 0.0

13.4 86.6 0.0

1.6 0.0 98.4

Table B-36. Confusion Matrices for Simulated Modulated Signals (Three-Class, Eleven-Features):
MSNN Mod 3. (see App B cover page for table description)

144

c
o

Ü

1
o o

I

Sim Features-50
Sim Foaturos-10
Sim Features-3
Sim Signal-S1
Sim Signal[PCA]-
Sim Signal-26
Sim SignalfPCA]-
Sim Signal-11
Sim Signal[PCA]-

51

26

■11
O

SNR (dB)

Figure B-l. Statistical Classifier Performance Results.

c o

1 it

i o

!
8
I

-20 -10
SNR (dB)

Figure B-2. Perceptron Performance Results.

c o

I it

«
O

I
8
I

20
-10

Sim Features-50
Sim Features-10
Sim Features-3
Sim Signal-51
Sim Slgnal-26
Sim Slgnal-11

O
SNR (dB)

10 15

Figure B-3. MSNN Performance Results.

145

o

I
"5
CO
M
O

o
Ü

I
20

Figure B-4. MSNN Mod 1 Performance Results.

c o

in
to

O

i
k_ o
Ü

I
□ Sim Features-50

-&- Sim Features-10
-0- Sim Features-3

III Sim Slgnal-51
—M — Sim Signal-26
—!— Sim Signal-11

o
SNR (dB)

Figure B-5. MSNN Mod 2 Performance Results.

CO o

CO «
O

t o
Ü

CD

SNR (dB)

Figure B-6. MSNN Mod 3 Performance Results.

146

APPENDIX C. MATLAB CLASSIFICATION PROGRAMS

This section contains the MATLAB programs used to generate the simulation

results discussed in Chapters IV and V. These functions are categorized as either

common or specific to a particular classification scheme.

A. COMMON PROGRAMS

The common programs included in this section include the main program; feature

simulation functions; modulated signal simulation and feature extraction functions; and

data conditioning and display routines.

1. Controlling Program: simmsnn_compare.m

% COMPARE classification methods
%
% 5 March 2000
% Miguel G. San Pedro
%*************************+**

clear
format compact
format short e

global gloUsrReq
gloUsrReq = input('Skip all optional displays (Y/N): ','s');

global gloUsrPlot
gloUsrPlot = input('Plot learning curves (Y/N): ','s');

num_data = []; % number of training realizations
class_mean = []; % feature mean values
class_cov = []
class_var = []
classData = []
testClass = []

% feature covariance matrix
% feature variance values
% training data set
% testing data set

snr = []; % training/testing signal SNR

save test\testClass.dat testClass -ascii -tabs

% ASK if simulate signal or simulate data
usrReq = input('Simulate <signal> or <*data*>: ','s');
dispC ')

% GENERATE testing/training data
if (usrReq == 'signal')

num_class = 3; % number of signal classes
A = 4; % SET signal amplitude
T = le-7; % SET bit period (sec)
fs = 5e8; % SET bit sampling frequency (samples/sec)
fc = 4e7; % SET carrier frequency (Hz_
n = linspace(0,T,fs*T);
features = []; % vector of distinguishing features
trnFeatures = [],- % vector of class distinguishing features
mnFeatures = []; % vector of class distinguishing feature mean
covFeatures = (]; % class covariance matrix

147

varFeatures = [] ; % vector of class distinguishing feature variance

% DETERMINE signal features
disp (' EXTRACTING SIGNAL FEATURES ')
features = detFeatures;
[numRows,num_features] = size(features);
disp(['Number of features: ',num2str(num_features)])
disp (' ')

% GENERATE signals
num_data = input('Enter number of training signals (def=100): ') ;
if (isempty(num_data))

num_data = 100;
end

usrSNR = input('Add noise (Y/N): ', ' s') ;
if (usrSNR == 'Y')

snr = input ('Enter signal SNR (default=0dB) : ') ,-
dispC ')
if (isenpty{snr)) ,-

snr = 0;
end

else
snr = 9999;

end

plotSignal('plot2ASK',A,T,fc,n,features,snr)
plotSignal('plot2PSK',A,T,fc,n,features,snr)
plotSignal('plot2FSK',A,T,fc,n,features,snr)

[trnFeatures,mnFeatures,covFeatures,varFeatures]...
= genSignal('gen2ASK',num_data,A,T,fs,n,features,snr);

classData = [classData;trnFeatures];
class_mean = [class_mean mnFeatures];
class_cov = [class_cov covFeatures];
class_var = [class_var varFeatures],-

[trnFeatures,mnFeatures,covFeatures,varFeatures]...
= genSignal Cgen2PSK',num_data,A,T, fs,n, features, snr) ;

classData = [classData;trnFeatures];
class_mean = [class_mean mnFeatures];
class_cov = [class_cov covFeatures] ,-
class_var = [class_var varFeatures];

[trnFeatures,mnFeatures,covFeatures,varFeatures]...
= genSignal('gen2FSK',num_data,A,T,fs,n,features,snr);

classData = [classData; trnFeatures] ,-
class_mean = [class_mean mnFeatures];
class_cov = [class_cov covFeatures];
class_var = [class_var varFeatures];

% GENERATE random test data
load testClass.dat
randTest = 100*randn(num_features,num_data*10) ,-
testClass = [testClass;randTest];
save test\testClass.dat testClass -ascii -tabs

else
% ASK user for input data;
num_class = [] ,-
num_features = [];

else set default values
% number of signal classes
% number of distinguishing features

userlnput = input('Enter user defined inputs (Y/N): ','s');
if (userlnput == 'Y')

disp(' ')
[num_data,num_class,num_features,class_mean,class_var]...

= userData(num_data,num_class,num_features,class_mean,class_var),

148

else
% default values
num_data = 100;
num_class = 3;
num_features = 3;
class_mean = 2*rand(num_features,num_class) - 1;

usrSNR = input ('Add noise (Y/N) : ', ' s') ,-
if (usrSNR == 'Y')

snr = input('Enter feature SNR (default=0dB): ');
if (isempty(snr))

snr = 0;
end

snrConst = 10A(snr/10);

for k = l:num_class
cont = 1;
classVar = [];
varPower = num_features/snrConst;
while(cont)

classVar = rand(num_features-l,l)/snrConst;
lastVar = varPower- sum(classVar);
if (lastVar >= 0)

classVar = [classVar' lastVar]';
cont = 0;

end
end
class_var = [class_var classVar];

end
else

class_var = zeros(num_features,num_class);
end
% NOTE: with class_mean and class_var, construct data then
% covariance matrix

end
class_mean
class_var

%***
% GENERATE class training/testing data
% NOTE: genclass_compare GENERATES/RETURNS training data and STORES
% testing realizations in work\test
% dim(classData) = num_features*num_class x num_data

[classData,class_cov] = genclass_compare(num_data,class_mean,class_var);

[rowData,num_data] = size(classData);
if (rowData ~= num_features*num_class)

disp('ERROR in data field')
end

end
^**
% NORMALIZE training and testing data by standard deviation (Method2)
[classData_norm] = dataMethod2 (classData,class_mean,class_var) ,-

£**

% PLOT performance parameter and error surfaces/contours over a range
% of w and b
plotMS(num_class,num_features,classData,classData_norm)

%**

% SET NN training parameters
al=20; % epochs between updating display
a2=500; % maximum number of epochs to train
a3=100; % initial learning rate

149

a4=2; % learning rate increase
a5=0.5; % learning rate decrease
a6=0.9; % momentum constant
a7=1.04; % maximum error ratio
tp = [al a2 a3 a4 a5 a6 a7] ;

% INITIALIZE/GENERATE 5 sets of weight and bias values,
w = 2*randn(num_features,5)-1;
b = randn (1,5);

% MONITOR MD, weight, bias update
%checkWB = [];
%save checkWB.dat checkWB -ascii -tabs

% INITIALIZE confusion matrix counters
% note: reset confusion matrix when change class number, feature number, or SNR
reset = input('Reset confusion matrix counters (Y/N): ','s');
if (reset == 'Y')

typeA = zeros(num_class+l,num_class);
typeB = zeros(num_class+l,num_class);
typeBl = zeros(num_class+l,num_class);
typeC = zeros(num_class+l,num_class);
typeStat = zeros (num_class+l,num_class),-

save typeA.dat typeA -ascii -tabs
save typeB.dat typeB -ascii -tabs
save typeBl.dat typeBl -ascii -tabs
save typeC.dat typeC -ascii -tabs
save typeStat.dat typeStat -ascii -tabs

end

% A. TRAIN/TEST standard MSNN
cd Method_SPl

dispC ')
disp('**/)
dispCA. MSNN')
fig = 2000;

% type is CONFUSION MATRIX
% note: type tracks confusion matrix for these 5-runs
% typeA tracks confusion matrix for multiple 5-run
% individual runs tracked by confusion matrix in simmsnn.m (i.e., typel)
type = zeros(num_class+l,num_class);
save type.dat type -ascii -tabs

for m = 1:5
disp(['Run ',num2str(m)])
simmsnn('trms_sp',l,classData,num_features,w(:,m),b(l,m),tp,fig);
dispC ')
fig = fig+l+sum(l: (num_.class-l)) ;

end

load type.dat
disp(' ')
for m = l:num_class+l

disp(['TYPE',num2str(m),': ',num2str(type(m,:))])
end

cd . .
load typeA.dat
[Arow,Acol] = size(typeA);
tempA = typeA(Arow-num_class:Arow,:);
tempA = tempA + type;
typeA = [typeA,-tempA],-

150

save typeA.dat typeA -ascii -tabs

s^* ***
s^* ***

% B. TRAIN/TEST MSNN with normalized projection space (MSNN Mod 2)
cd Method_SP5

dispC ')
di SD(' + ***')
dispt'B. MSNN with norm projection space (MSNN Mod 3)')
fig = 2500;

% type is CONFUSION MATRIX
type = zeros(num_class+l,num_class);
save type.dat type -ascii -tabs

for m = 1:5
disp(['Run ',num2str(m)])
simmsnn('trms_sp5',5,classData,num_features,w(:,m),b(l,m),tp, fig);
dispC ')
fig = fig+l+sum(l:(num_class-l));

end

load type.dat
disp (' ')
for m = l:num_class+l

disp(['TYPE',num2str(m) , ' : ' ,num2str (typefm, :))])
end

cd . .
load typeB.dat
[Brow,Bcol] = size(typeB);
tempB = typeB(Brow-num_class:Brow,:);
tempB = tempB + type;
typeB = [typeB;tempB];
save typeB.dat typeB -ascii -tabs

<^**
<^**
% Bl. TRAIN/TEST MSNN and VMR termination reqmt (MSNN Mod 3)
cd Method_SP8

disp (' ')

dispt'Bl. MSNN with VMR termination (MSNN Mod 3)')
fig = 2500;

% type is CONFUSION MATRIX
type = zeros(nuni_class+l,num_class) ;
save type.dat type -ascii -tabs

for m = 1:5
disp(['Run ',num2str(m)])
simmsnnl'trms_sp8',8,classData,num_features,w(:,m),b(l,m),tp,fig);
dispC ')
fig = fig+l+sum(l: (num^.class-1)) ;

end

load type.dat
disp (' ')
for m = 1:num_class+l

disp(['TYPE' ,num2str(m) , ' : ' ,num2str(typedn, :))])
end

cd . .
load typeBl.dat
[Blrow,Blcol] = size(typeBl);

151

tempBl = typeBl(Blrow-num_class:Blrow,:);
tenpBl = tempBl + type;
typeBl = [typeBl;tempBl];
save typeBl.dat typeBl -ascii -tabs

JMH*»**H»HUH»HHH«HH»t««JH4tH*M),i«*HM«tH«t«Hil»i»HHHUM*«(*»»HH

% C. TRAIN/TEST MSNN with preconditioned input space (MSNN Mod 1)
cd Method_SP2

dispC ')
disp('**/\

dispCC. MSNN with precond input (MSNN Mod 1)')
fig = 3000;

% type is CONFUSION MATRIX
type = zeros(num_class+l,num_class);
save type.dat type -ascii -tabs

for m = 1:5
disp(['Run ',num2str(m)])
simmsnn_C(classData_norm,num_features,w(:,m),b(l,m),tp,fig);
disp (' ')
fig = fig+l+sum(l: (num_class-l)) ,•

end

load type.dat
dispC ')
for m = l:num_class+l

disp(['TYPE',num2str(m),'
end

,num2str(type(m,:))])

cd ..
load typeC.dat
[Crow,Ccol] = size(typeC);
tempC = typeC(Crow-num_class:Crow,:);
tempC = tempC + type;
typeC = [typeC;teinpC] ,-
save typeC.dat typeC -ascii -tabs

jM»m*HH*HHH»HH*«««*H«M«»»l,MiM*m»»**«HMtH**«t»iHHH4«t,»UH

% D. PERCEPTRON NN
dispC ')
disp('**')
di sp('D. Perceptron')
cd Method_SP7

% type is CONFUSION MATRIX
type = zeros(num_class+l,num_class);
save type.dat type -ascii -tabs
noType = 0;
save noType.dat noType -ascii -tabs

for m = 1:5
disp(['Run ',num2str(m)])
percptrnClassifier(num_class,classData,w(:,m),b(:,m))
disp(' ')

end

load type.dat
for m = l:num_class+l

disp(['TYPE',num2str(m) , '
end
load noType.dat
disp(['BAD TYPE: ',num2str(noType)]

,num2str(type(m,:))])

152

cd . .
load typeD.dat
[Drow,Dcol] = size(typeD);
tempD = typeD(Drow-num_class:Drow,:);
tempD = tempD + type;
typeD = [typeD;tempD];
save typeD.dat typeD -ascii -tabs

%**
%**
%% E. TEST iaw Brunzell/Eriksson quadratic classifier
dispC ')'
di SD{'**')
dispCE. Statistical Classifier')

statClassifier(num_data,num_class,num_features,class_mean,class_cov)

Feature Simulation

a. userData.m
function [num_data,num_class,num_features,class_mean,class_var] . ..

= userData(num_data,num_class,num_features,class_mean,class_var)

%**
% Function
% - PROMPTS user for data specifications
% - if no user data entered, default values used
%
% Use: [num_data,num_class,num_features,class_mean,class_yar]
% = userData(num_data,num_class,num_features,class_mean,class_var)
%
% Input/Returns
% num_data: number of training signals to construct
% num_class: number of signal classes
% num_features: number of distinguishing features
% class_mean: 'num_class' 'num_features'xl vectors of class feature means
% class_var: 'num_class' 'num_features'xl vectors of class feature variances
%
% 25 January 2000
% Miguel G. San Pedro
%**

dispCWhen asked for values, hit <enter> to use default values')

disp(' ')
num_data = input('Enter number of training signals (default=100): ');
if (isempty(num_data))

num_data = 100;
end

dispC ')
num_class = input('Enter number of classes (default=3): ');
if (isempty(num_class))

num_class = 3;
end

dispC ')
num_features = input('Enter number of features (default=3): ');
if (isempty(num_features))

num_features = 3 ;
end
if (num_features < num_class)

disp('ERROR: number of distinguishing features > number of classes')
end

153

dispC ')
userData = input('Enter mean for each feature for all classes (Y/N):
if (userData == 'Y')

for k = l:num_class
getData = input(['Enter mean for class',num2str(k) ,...

' features (enter as column vector): ']);
[rowData,colData] = size(getData);
if(rowData*colData -= num_features)

disp('* * * DATA ENTRY ERROR * * *')
else

if (colData ~=1)
getData = reshape (getData, rowData*colData, 1) ,-

end
end
class_mean(:,k) = getData;

end
else

class_mean = 2*rand(num_features,num_class) - 1;
end

dispC ')

userData = input('Enter variance for each feature for all classes (Y/N)
if (userData == 'Y')

for k = l:num_class
getData = input(['Enter variance for class',num2str(k) ,...

' features (enter as column vector): ']);
[rowData,colData] = size(getData);
if(rowData*colData ~= num_features)

dispC*** DATA ENTRY ERROR ***')
else

if (colData ~=1)
getData = reshape(getData,rowData*colData,1);

end
end
class_var(:,k) = getData;

end
else

% Randomly DETERMINE variance and ADD white noise
snr = [];
class_var = [] ;
usrSNR = input('Add noise (Y/N): ','s');
if (usrSNR == 'Y')

snr = input ('Enter feature SNR (default=OdB) : '),-
if (isempty(snr))

snr = 0;
end

','s'),-

','s'J

snrConst = 10Ä(snr/10);

for k = l:num_class
cont = 1;
classVar = [],-
varPower = num_features/snrConst;
while(cont)

classVar = rand(num_features-l,1)/snrConst;
lastVar = varPower - sum(classVar),-
if (lastVar >= 0)

classVar = [classVar' lastVar]';
cont = 0;

end
end
class_var = [class_var classVar];

end
else

class_var = zeros(num_features,num_class);
end

end

154

% NOTE: with class_mean and class_var, construct data then covariance matrix

return

b. genclass_compare.m
function [difclass,class_cov] = genclass_compare (numData, class_mean, class_var) ,-

^**

% Function
% - Randomly GENERATES 'numData' training realizations of 'num_class' classes (note:
% num_class plotting limited to <= 5).
% - CALCULATES covariance matrix of data for statistical analysis
% - PRE-CONDITIONS class data for use by Method2 by normalizing data by standard
% deviation, resulting in "testcl#" data (normalized data vice normalized
% projections).
% - GENERATES 10*'numData' test realizations.
%
% Use: [classdata,class_cov] = genclass_compare(numData,num_class,class_mean,class_var);
%
% Input numData: number of training signals to construct
% class_mean: 'num_class' 'num_features'xl vectors of class feature means
% class_var: 'num_class' 'num_features'xl vectors of class feature variances
%
% Returns difclass: generated training data points
% class_cov: 'num_class' 'num_features'x'num_features' covariance matrix
%
% Saves at directory test/, testing realizations
%
% 14 January 2000
% Miguel G. San Pedro
%**
plot_char = ['b*';'r+';'go';'cs'; 'md'] ;
class_cov = [];
difclass = [];

%" TRAINING REALIZATIONS
figure(1)
orient tall

[num_features,num_class] = size(class_mean),-
% GENERATE numData training realizations
for m = l:num_class

classData = sqrt(class_var(:,[m*ones(1,numData)])).*randn(num_features,numData)...
+ class_mean(:,[m*ones(1,numData)]);

class_cov = [class_cov-cov(classData')];
difclass = [difclass;classData];

% PLOT first three features of each class
subplot(211)
plot3(classData(1,:),classData(2,:),classData(3,:),plot_char(m,:))
hold on
xlabel('First Feature');
ylabel('Second Feature');
zlabel('Third Feature');
title('Training Data')
box on
grid on

subplot(234)
plot(classData(1,:),classData(2,:),plot_char(m,:))
hold on
xlabel('First Feature');
ylabel('Second Feature');
grid on

155

subplot(235)
plot(classData(l,:),classData(3,:),plot_char(m,:))
hold on
xlabel ('First Feature') ,-
ylabel('Third Feature');
grid on

subplot(236)
plot(classData(2,:),classData(3,:),plot_char(m,:))
hold on
xlabel('Second Feature');
ylabel ('Third Feature') ,-
grid on

end
hold off

%***********************, «.«.««Htt..».».....«».».«.»..».»..».*....*.*..*.»..**.**

% GENERATE
% - numData*10 test realizations of each classes
% - test_data realizations of random noise that should not type to any classes
test_data = numData*10;
testClass = [] ,-

for k = l:num_class
cl_SD = [];
cl_SD = sqrt(class_var(:,[k*ones(1,test_data)]));
cl_Mean = [] ;
cl_Mean = class_mean(:,[k*ones(1,test_data)]);

trainData = cl_SD.*randn(num_features,test_data) + cl_Mean;
testClass = [testClass;trainData];

end

% GENERATE non-class data for testing
nonClassData = 10*randn(num_features,test_data) - 5;
testClass = [testClass;nonClassData] ,-
save test\testClass.dat testClass -ascii -tabs

return

Modulated Signal Simulation and Feature Extraction

a. genSignaLm
function [featuresSave,meanSig,covSig,varSig]...

= genSignal(fxn,num_signals,A,T,f,n,features,snr)

% Function
% - GENERATES training and testing signals
%

% Use: [featuresSave,meanSig,covSig,varSig]
% = genSignal(fxn,num_signals,A,T,f,n,features,snr)
%

% Input fxn: string name of signal type to construct
% C2-ASK', '2-PSK', or '2-FSK')
% num_signals: number of training signals to construct; constructs

10*num_signals testing signals
signal amplitude
signal period
carrier frequency
time sample vector

features: distinguishing features indices (from detFeatures.m)
snr: signal SNR

% A
% T
% f
% n

%
% Returns featuresSave: distinguishing features extracted for classifying

156

% meanSig
% covSig:
% varSig:
%

% element is zero

: mean of extracted features
covariance matrix of extracted features
variance of extracted features

% 31 January 2000
% Miguel G. San Pedro

% GENERATE training signals
featuresSave = [];
for k = l:num_signals

[signal,featuresSignal] = feval(fxn,A,T,f,n,features,snr);
featuresSave = [featuresSave featuresSignal] ,-

end
meanSig = mean(featuresSave,2);
covSig = cov(featuresSave') ;
[covSigRow,covSigCol] = size(covSig);
for k = l:covSigRow

for kk = l:covSigCol
if (-covSig(k,kk))

covSig(k,kk) = le-10;
end

end
end
varSig = diag(covSig);
%goon = input('continue ','s');
%if goon == 'y'
% varSig
% meanSig
%end

% GENERATE testing signals
load testClass.dat
testClassSave = [];
for k = l:10*num_signals

[signal,testSignal] = feval(fxn,A,T,f,n,features,snr);
testClassSave = [testClassSave testSignal];

end
testClass = [testClass;testClassSave];
save test\testClass.dat testClass -ascii -tabs

return

gen2ASK.m, gen2PSK.m, gen2FSK.m
function [signal,features2ASK] = gen2ASK(A,T,fc,n,features,snr)

Function
- GENERATES a 2ASK signal

Use: [signal,features2ASK]

Input A:
T:
fc:
n:
features:
snr:

Returns signal:

features2ASK:

21 January 2000
Miguel G. San Pedro

= gen2ASK(A,T,fc,n,features,snr)

signal amplitude
bit period
carrier frequency
time sample vector
distinguishing features indices (from detFeatures.m)
signal SNR

postive frequencies of Fourier transformed 2-ASK signal
realization
distinguishing features spectral magnitudes

157

jutmttmmtjtitiiümtitjujjjittmjjj.j.jjjjjj,,,,,,,,^,^

% GENERATE message
a = zeros (1,20) ,-
while (sum(a) == 0)

a = round(rand(l,20)) ;
end
basis = A/sqrt(T)*sin(2*pi*fc*n)

% SET basis function

msg = [];
for kk = 1:length(a)

msg = [msg a(kk)*basis];
end
[msgRow,msgCol] = size(msg);
v = reshape(msg,l,msgRow*msgCol);

% ADD white noise
if ((nargin >=5) & (snr ~= 9999))

energyV = v*v';
varNoise = (energyV/length(n))/10"(snr/10);
noise = sqrt(varNoise)*randn(size(v)),-
v = v + noise;

end

% NORMALIZE the signal power
den = v*v';
v = v/sqrt (den) ,-

% PRE-PROCESS signal
% - use decision rule to extract points
[sigRow,sigCol] = size(v);
iter = floor(sigCol/250);
aveSig = zeros(1,1000);
for k = 1:iter

% FFT signal
block = v(l,250*k-249:250*k) ,-

. sigFFT = abs(fft(block,1000));
aveSig = aveSig + sigFFT;

end
signal = aveSigd:length(aveSig)12)/iter;

f eatures2ASK = [] ,-
if (nargin >= 5)

features2ASK = signal(features)';
end

return

% discard leftover points

function [signal,features2PSK] = gen2PSK(A,T,fc,n,features,snr)

% Function
% - GENERATES a 2PSK signal
%
% Use: [signal,features2PSK] = gen2PSK(A,T,fc,n,features,snr)
%

signal amplitude
bit period
carrier frequency
time sample vector
distinguishing features indices (from detFeatures.m)
signal SNR

% Input
%
%
%
%
%
%
% Returns signal:

A:
T:
fc:
n:
features:
snr:

features2PSK:

postive frequencies of Fourier transformed 2-PSK signal
realization
distinguishing features spectral magnitudes

158

%
% 21 January 2000
% Miguel G. San Pedro
%**

% GENERATE message
a = 2*round(rand(l,20)) - 1;
basis = A*sqrt(2/T)*sin(2*pi*fc*n); % SET basis function

msg = [];
for kk = 1:length(a)

msg = [msg a(kk)*basis];
end
[msgRow,msgCol] = size(msg);
msg = reshape(msg,l,msgRow*msgCol);

v = msg;

% ADD white noise
if ((nargin >=5) & (snr -= 9999))

energyV = v*v';
varNoise = (energyWlength(n))/10" (snr/10) ;
noise = sqrt(varNoise)*randn(size(v));
v = v + noise;

end

% NORMALIZE the signal power
v = v/sgrt(v*v');

% PRE-PROCESS signal
% - use decision rule to extract points
[sigRow,sigCol] = size(v);
iter = floor(sigCol/250); % discard leftover points
aveSig = zeros(1,1000);
for k = l:iter

% FFT signal
block = v(l,250*k-249:250*k);
sigFFT = abs(fft(block,1000));
aveSig = aveSig + sigFFT,-

end
signal = aveSig(1:length(aveSig)12)/iter;

features2PSK = [];
if (nargin >= 5)

features2PSK = signal(features)';
end

return

function [signal,features2FSK] = gen2FSK(A,T,fc,n,features,snr)

% Function
% - GENERATES a 2FSK signal
%
% Use: [signal,features2FSK] = gen2FSK(A,T,fc,n,features,snr)
%
% Input A: signal amplitude
% T: bit period
% fc: carrier frequency
% n: time sample vector
% features: distinguishing features indices (from detFeatures.m)
% snr: signal SNR
%
% Returns signal: postive frequencies of Fourier transformed 2-FSK signal
% realization

159

features2FSK: distinguishing features spectral magnitudes %
%
% 21 January 2000
% Miguel G. San Pedro

delf = 1/T;

% GENERATE message
a = round (rand (1,20)) ,-

basis = [] ;
for kk = 1:length(a)

if (a(kk) == 1)
basis = [basis sqrt(2/T)*sin(2*pi*fc*n)];

else
basis = [basis sqrt (2/T) *sin(2*pi* (fc+delf) *n)] ,-

end
end
msg = basis;
[msgRow,msgCol] = size(msg);
msg = reshape(msg,l,msgRow*msgCol);

v = A*msg;

% ADD white noise
if ((nargin >=5) & (snr -= 9999))

energyV = v*v',-
varNoise = (energyV/length(n))/10*(snr/10) ;
noise = sqrt (varNoise) *randn(size (v)) ;
v = v + noise;

end

% NORMALIZE the signal power
v = v/sqrt(v*v');

% PRE-PROCESS signal
% - use decision rule to extract points
[sigRow,sigCol] = size(v);
iter = floor(sigCol/250);
aveSig = zeros(1,1000);
for k = l:iter

% FFT signal
block = v(l,250*k-249:250*k) ;
sigFFT = abs(fft(block, 1000));
aveSig = aveSig + sigFFT,-

end
signal = aveSig(l:length(aveSig)12)/iter;

f eatures2FSK = [] ,-
if (nargin >= 5)

features2FSK = signal(features)';
end

return

% discard leftover points

c. detFeatures.m, extractFeatures.m
function [features] = detFeatures

% Function
% - EXTRACTS feature indices to be used for signal classification
%
% Use: [featuresLoc] = extractFeatures(sigType,signal)
%
% Input (none)

160

%
% Returns features: signal component indices for signal classification
%
% 21 January 2000
% Miguel G. San Pedro

clear

A = 4; % SET signal amplitude
T = le-6; % SET bit interval of signal (sec)
fs = 5e7; % SET bit sampling frequency (samples/sec)
fc = 5e6; % SET carrier frequency (Hz)
n = linspace(0,T,fs*T);
features = [];

% DETERMINE classl features: 2-ASK
featuresSave = [] ;
for k = 1:1000

[ASK, temp] = gen2ASK(A,T,fc,n) ,-
featuresLoc = extractFeatures ('2ASK' ,ASK) ,-
if (k -= 1)

featuresSave = intersect(featuresSave,featuresLoc);
else

featuresSave = featuresLoc,-
end

end
features2ASK = featuresSave;
disp(size(features2ASK))

features = union(features, features2ASK) ,-

% DETERMINE class2 features: 2-PSK
featuresSave = [];
for k = 1:1000

[PSK,temp] = gen2PSK(A,T,fc,n) ,-
featuresLoc = extractFeatures('2PSK',PSK);
if (k -= 1)

featuresSave = intersect(featuresSave,featuresLoc);
else

featuresSave = featuresLoc,-
end

end
features2PSK = featuresSave;
disp(size(features2PSK))

features = union(features,features2PSK);

% DETERMINE class3 features: 2-FSK
featuresSave = [] ;
for k = 1:1000

[FSK,temp] = gen2FSK(A,T,fc,n) ,-
featuresLoc = extractFeatures; '2FSK' ,FSK) ,-
if (k -= 1)

featuresSave = intersect(featuresSave,featuresLoc);
else

featuresSave = featuresLoc;
end

end
features2FSK = featuresSave;
disp(size(features2FSK))

features = union(features,features2FSK);

return

161

function [featuresLoc] = extractFeatures(sigType,signal)

JMH.H.......M.«H*«,M,„H„HH,H,MH„HH,„M]r(MHttt4H(rtttHH)iH4H4(Ht

% Function

% - EXTRACTS feature indices satisfying prescribed decision rule
%

% Use: [featuresLoc] = extractFeatures(sigType,signal)
%
% Input sigType: string specifying signal type
% signal: signal frequency components
%

% Returns featuresLoc: indices of signal components satisfying prescribed decision
% rule
%
% 21 January 2000
% Miguel G. San Pedro

npoints =2; % npoints specifies feature spacing
featuresLoc = 30:npoints:130; % decision rule

return

4. Data Conditioning and Display

a. dataMethodl.m
function [classData_norm] = dataMethod2(classData,class_mean,class_var)

{««.«..«»»«„»„„«.».....«.«.„«„„„»„„„„„„„„„„„„„„„„„„„^
% Function
% - NORMALIZES training and testing data by class standard deviation for use in Method2
%
% Use: [classData_norm] = dataMethod2(classData,class_mean,class_var)

% Input classData:
% class_mean:
% class_var:
%

generated training data
'num_class' 'num_features'xl vectors of class feature means
'num_class' 'num_features'xl vectors of class feature
variances

% Returns classData_norm: normalized training data
%

% Saves at directory test/, normalized testing realizations
%
% 14 January 2000
% Miguel G. San Pedro
t*«...H,...«*„.ti*»4H„„„»HH»,„MH„tl4JH11,H14ilM]lllllit(rlllrtttttti4ttttt4

classData_norm = [] ,-
[num_features,num_class] = size(class_mean) ,-
[rowData,num_data] = size(classData);

% NORMALIZE training data by standard deviation (Method2)
if (num_features*num_class ~= rowData)

disp('Note: INPUT ERROR')
else

for k = l:num_class
knum_feat = k*num_f eatures ,-
data = classData(knum_feat - num_features + l:knum_feat, :) ,-
data_adj = (data - class_mean(:,[k*ones(l,num_data)]))...

./sqrt(class_var(:, [k*ones (l,nuin_data)]))...
+ class_mean(:,[k*ones(l,num_data)]);

classData_norm = [classData_norm;data_adj];
end

end

162

% NORMALIZE testing data by standard deviation (Method2)
testClass_norm = [];
load test\testClass.dat
[rowData,num_test] = size(testClass);

if (num_features*(num_class+l) -= rowData)
dispCNote: INPUT ERROR')

else
for k = l:num_class+l

knum_feat = k*num_features;
data = testClass(knum_feat - num_features + 1:knum_feat,:);
data_adj_save = [];
for kk = l:num_class

data_adj = (data - class_mean(:,[kk*ones(l,num_test)]))...
./sqrt(class_var(:,[kk*ones(l,num_test)]))...
+ class_mean(:, [kk*ones(l,num_test)]) ;

data_adj_save = [data_adj_save;data_adj];
end
testClass_norm = [testClass_norm data_adj_save];

end
end

save test\testClass_norm.dat testClass_norm -ascii -tabs

return .

b. plotMS.m, errsurfjsp.m
function plotMS(num_class,num_features,classData,classData_norm)

^**

% Function
% PLOTS projection of test data using weights and bias determined by the mean
% separator neural network
%
% Use: plotMS(num_class,num_features,classData,classData_norm)
%
% Input num_class: number of signal classes
% num_features: number of distinguishing features
% classData: class data training set
% classData: class data training set (normalized - Method2)
%
% Limitations: can plot only 1 feature classes
%
% Returns (none)
%
% 12 January 2000
% Miguel G. San Pedro
o**

global gloUsrReq

wl = [];
if (gloUsrReq == 'N')

userReq = input('Plot Mean Separator and Error surface and contours (Y/N): ','s');
if (userReq == 'Y')

f = ['meansep_spl'; ' meansep_sp2 ' ,- 'meansep_sp3 ' ; 'meansep_sp5 '] ;
wl = inputfEnter weight/bias range (default -100:100): ') ;
bl = wl;
if (isempty(wl))

wl = [-50:.25:50] ;
bl = wl;

end
for k = 1:4

for m = l:num_class
mnum_feat = m*num_features;

163

for mm = m+l:num_class
mmnum_feat = mm*num_features;
if (k ~= 2)

ell = classData(mnum_feat - num_features + l:mnum_feat,:);
cl2 = classData(mmnum_feat - num_features + 1:mmnum_feat,:);
p = [cll;cl2];

else
ell = classData_norm(mnum_feat - num_features + l:mnum_feat, :);
cl2 = classData_norm(mmnum_feat - num_features + l:mmnum_feat, :)
p = [cll;cl2];

end
errsurf_sp(p,wl,bl,f (k, :)) ;

end
end

end
end

end

return

function m = errsurf_sp(p,wv,bv,f)

% Function
% PLOTS the error surface and error contours of a mean seperator neural network over a
% range of weights and biases
%
% Use m = errmesh_sp(p,wv,bv,f)
%
% Input p: 2xQ matrix of input vectors. First row - feature of class 1; second row -
% feature of class 2 in second row
% wv: column vector of weights
% bv: column vector biases
% f: transfer function (optional, default - meansep_sp5)
%
% Returns m: matrix of error values over wv and bv.
%
% Example
% p = [-6.0 -6.1 -4.1 -4.0 +4.0 +4.1 +6.0 + 6.1;
% +0.0 +0.0 +.97 +.99 +.01 +.03 +1.0 +1.0];
% WV = (-1:.1:1)';
% bv = (-2.5:.25:2.5)
% es = errmesh_sp(p,wv,bv,'meansep_sp5');
%
% 5 January 2000
% Miguel G. San Pedro

if nargin < 3,error('Not enough input arguments.');end
if (nargin == 3)

'meansep_sp5',
end

[pRow,pCol] = size(p);
pl = P(l,:);
p2 = p(2,:);

if (f == 'meansep_spl')
t = -400;

end
if (f == 'meansep_sp2')

t = -400;
f = 'meansep_spl';

end
if (f == 'meansep_sp5')

% for meansep_sp2, refer to notes in meansep_sp2 function
% code

% for MSNN norm proj var, no identifiable optimum value.

164

% Algorithm is such that want to increase mean spread and
% decrease sum of variance. Result wanted is large
% magnitude for value of performance parameter. Therefore,
% set t=0 ==> error plot and performance plot are the same,

t = 0;
end

m = zeros (length (bv) , length (wv)) ,-
for k = 1:length(wv)

for kk = 1:length(bv)
pp(kk,k) = feval(f,pl,p2,wv(k),bv(kk));
if (f == 'meansep_sp3')

if (pp(kk,k) <= 400)
t = 0;

else
t = 1600;

end
end
m(kk,k) = (t - pp(kk,k))'"2; % squared error calculation

end
end

% PLOT performance parameter suface and contours
figure
orient landscape
subplot(221)
grid
mesh(bv,wv,pp)
xlabel('bias')
ylabel('weight')
zlabeK'Mean Separator')
title (['Performance Parameter Surface C,f,')'])

subplot(222)
grid
contour(bv,wv,pp,10)
xlabel('bias')
ylabel('weight')
titlet['Performance Parameter Contours C,f,')'])

% PLOT error surface and contours
subplot(223)
grid
mesh(bv,wv,m)
xlabel('bias')
ylabel('weight')
zlabel('error')
titlet['Error Surface C,f,')'])

subplot(224)
grid
contour(bv,wv,m,10)
xlabel('bias')
ylabel('weight')
title(['Error Contours C,f,')'])

return

dispProjection.m, plotProjection.m, dispWeightBias.m
function dispProjection(o,r,numTestPts,method)

%**

%
%
%

Function
DISPLAYS the projection of
separator neural network

test data using weights and bias determined by the mean

165

% Use: dispProjection(o,r,numTestPts,method)
%
% Input o: matrix of all test data projection
% r: matrix of class identification projection
% numTestPts: number of test data points
% method: method number
%
% Returns (none)
%
% 12 January 2000
% Miguel G. San Pedro

% DISPLAY class type identifiers and testing data projection (considers each class
% separately)

[n,all_classes] = size(o);
num_class = all_classes/numTestPts - 1; % -1 so do not count noise block as a

% distinct class
for k = l:num_class

knumTestPts = k*numTestPts;
data = o (:, knumTestPts - numTestPts + 1:knumTestPts) ,-

disp(['r',num2str(k) , ' = ' ,num2str (r (: ,k) ')])
disp(['o',num2str(k) , ' = '])
disp(num2str(data'))
dispC ')

end

return

function plotProjection(o,r,numTestPts,method, fig)

J»4*t*i»*t**»t«***nHH*tt*M»***t*iiHiM»mi*»H**iiH«»»**ii*mtH»*i»HiiiiMMH

% Function
% PLOTS projection of test data using weights and bias determined by the mean
% separator neural network
%
% Use: plotProjection(o,r,numTestPts,method, fig)
%
% Input o: matrix of all test data projection
% r: matrix of class identification projection
% numTestPts: number of test data points
% method: method number
% fig: figure number
%
% Limitations: - o and r can only contain 3 rows of data
% - only 5 classes can be plotted
%
% Returns (none)
%
% 12 January 2000
% Miguel G. San Pedro

[n,all_classes] = size(o);
num_class = all_classes/numTestPts - 1; % -1 to discount noise block as a distinct

% class
% limit number of classes to plot to 5
if (num_class > 5)

num_class = 5;
end
plot_char = ['b*'; 'r+'; 'go',- 'cs',- 'md'] ;

figure(fig)

166

orient tall
for k = l:num_class

% considers each class separately
knumTestPts = k*numTestPts;
data = o(:,knumTestPts - numTestPts + 1:knumTestPts);

subplot(211)
plot3(data(1,1:5:length(data)),data(2,1:5:length(data)),data(3,1:5:length(data)) ,

plot_char(k,:))
hold on
plot3(r(l,k),r(2,k),r(3,k),plot_char(k,:))

subplot(234)
plot(data(l,l:5:length(data)),data(2,l:5:length(data)),plot_char(k,:))
hold on
plot(r(l,k),r(2,k),plot_char(k,:))

subplot(235)
plot(data(2,1:5:length(data)),data(3,1:5:length(data)),plot_char(k,:))
hold on
plot(r(2,k),r(3,k),plot_char(k,:))

subplot(236)
plot(data(l,l:5:length(data)),data(3,1:5:length(data)),'b*')
hold on

- plot(r(l,k),r(3,k),plot_char(k,:))
end

subplot(211)
titled'Test Data Projection (Method',num2str (method),')'])
xlabel('feature 1')
ylabel('feature 2')
zlabel('feature 3')
box on
grid on
hold off

subplot(234)
grid on
xlabel('feature 1')
ylabel('feature 2')
hold off

subplot(235)
grid on
xlabel('feature 2')
ylabel('feature 3')
hold off

subplot(236)
grid on
xlabel('feature 1')
ylabel('feature 3')
hold off

return

function dispWeightBias(w,b)

a**

% Function
% DISPLAYS weights and biases determined during training phase
%
% Use: dispWeightBias(w,b)
%
% Input w: projection weight vector

167

% b: projection bias
%
% Returns (none)
%
% 27 December 1999
% Miguel G. San Pedro
%***st***»*****tti.jnt»v,1.*tttti,1.1.tvtl.jl.<tlt4.1.tii

[num_prwise,num_class] = size(w);

% DISPLAY weights/bias and class type identifiers
for k = l:num_class

disp(['wNN',num2str(k),' = [',num2str(w(:,k)'),'] bNN',num2str(k), ' = ',...
num2str(b(k))]) ,-

dispC ')
end

return

B. CLASSIFICATION METHODS

This section contains the programs used to determine the classification capability

of the specific signal typing methods.

1. Statistical Classifier

a. statClassifier.m
function statClassifier(num_data,num_class/num_features,...

class_mean,class_cov)

% Function
% USES quadratic classifier to type classes
%

% Use: statClassifier(num_data,num_class,num_features,class_mean,class_cov)
%
% Input num_data: number of training realizations
% num_class: number of signal classes
% num_features: number of distinguishing features
% class_mean: feature mean values
% class_cov: feature covariance matrix
%
% Returns (none)
%
% 7 March 2000
% Miguel G. San Pedro

% LOAD test points
load test\testClass.dat

[testRow,testData] = size(testClass);
if (10*num_data -= testData)

dispC*** DATA ERROR ***')
end

% SET class a priori probabilities for equiprobably classes
P = l/num_class;

% LOAD stat classifier confusion matrix
load typeStat.dat

168

data = [] ;
tempMat = [] ;
for k = l:num_class

knum_feat = k*num_features;
data = testClass(knum_feat - num_features + 1:knum_feat,:);

distMat = [] ;
for kk = l:num_class

kknum_feat = kk*num_features;
dist = classDist(data,P,class_mean(: ,kk),...

class_cov(:,kknum_feat - num_features + l:kknum_feat));
distMat = [distMat;dist];

end

type = zeros(1,num_class);
for kk = l^estData1

[y index] = min(distMat(:,kk),[],1);
type(index) = type(index) + 1;

end

disp(['TYPE',num2str(k), ': ',num2str(type)])

[Statrow,Statcol] = size(typeStat);
tempStat = typeStat(Statrow-(num_class-k),:);
tempStat = tempStat + type;
tempMat = [tempMat;tempStat];

end

typeStat = [typeStat;tempMat];
save typeStat.dat typeStat -ascii -tabs

return

b. ClassDist.m
function [dist] = classDist(data,classProb,classMean,classCov)

%**** ************************************** ********************************* *** **********
% Function
% - DETERMINES classification distance for test data wrt to a particular class'
% statistics (as discussed by Brunzell/Eriksson)
% - distance parameter given by
% di(x) = ln(det(classCov)) - 2*lnP + (x-classMean)'*inv(classCov)*(x-classMean)
%
% Use: [dist] = classDist(data,classProb/ClassMean,classCov)
%
% Input data: m-dimensional test data to be typed (m rows)
% classProb: class a priori probability
% classMean: mxl vector of class feature mean values
% classCov: mxm covariance matrix for class features
%
% Returns dist: distance for each test data point
%
% 7 January 2000
% Miguel G. San Pedro
st**

[dataRow,dataCol] = size(data);

dist = [];
cl = log(det(classCov)) - 2*log(classProb);
c2 = inv(classCov) ,-
for k = 1: dataCol

c3 = data(:,k) - classMean;
dist(k) = cl + c3'*c2*c3;

end

169

return

Perceptron

a. percptmClassifier.m
function percptrnClassifier(num_class,snr,classData,w,b)

%**
% Function
% USES quadratic classifier to type classes
%
% Use: percptrnClassifier(num_class,classData,w,b)
%
% Input num_class: number of signal classes

snr: signal snr
% classData: class data training set
% w: projection weight vector
% b: projection bias
%
% Returns (none)
%
% 15 January 2000
% Miguel G. San Pedro
%*********************************•**

[totFeatures,numData] = size(classData);
numFeatures = totFeatures/num_class;

% TRAINING PHASE
% ORGANIZE input/target vector
p = [];
t = [1,-
target = detTargVect (num_class) ,-
for k = l:num_class

knumFeat = k*numFeatures;
p = [p classData(knumFeat - numFeatures + 1:knumFeat,:)] ;
t = [t target):, [k*ones(l,nurtiData)])] ;

end

[numNeurons,tCol] = size(t);
if (tCol -= num_class*numData)

dispC*** DATA ERROR')
end

net = newp(minmax(p) »numNeurons, 'hardlim', 'learnp') ,-
w = w' ,-
w = w([ones(1,numNeurons)],:),-
net.iw{1,1} = w;
net.b(l) = b([ones(1,numNeurons)],:);
net.trainParam.epochs = 2500;
figure
[net,tr] = train(net,p,t);

dispCFinal neuron weights and bias')
wNN = net.iw{l,1}
bNN = net.bQ}

maxEpoch = max(tr.epoch);
load snrEpoch.dat
snrEpoch = [snrEpoch; snr maxEpoch];
save snrEpoch.dat snrEpoch -ascii -tabs

load ..\test\testclass.dat
[testRow,numTestData] = size(testClass);

170

if(testRow -= numFeatures*(num_class+l))
disp (' * * * DATA ERROR')

end

% TESTING PHASE
% REORGANIZE testClass to place blocks of class test data in a row vice in a column
pTest = [] ;
for k = l:num_class+l

knumFeat = k*numFeatures;
pTest = [pTest testClass(knumFeat - numFeatures + 1:knumFeat,:)];

end
tTest = sim(net,pTest);

% COUNT results
typel = zeros (num_class+l, num_class) ,-
noTypel = 0;
for k = 1:(num_class+l)*numTestData

typeRow = ceiKk/numTestData) ;
index = bi2de(flipud(tTest(:,k))');
if ((index == 0)|(index > num_class))

if (typeRow <= num_class)
noTypel = noTypel +1; % do not count noType if random test data

end
else

typel(typeRow,index) = typel(typeRow,index) + 1;
end

end

% DISPLAY test data class typing
for m = l:num_class+l

disp(['type',num2str(m),': ',num2str(typel(m, :)) , ' ',num2str(numTestData)])
end
disp(['no type: ',num2str(noTypel)])
dispC ')

load type.dat
type = type + typel;
save type.dat type -ascii -tabs

load noType.dat
noType = noType + noTypel;
save noType.dat noType -ascii -tabs

return

b. detTargVectm
function [target] = detTargVect(num_class)

^t* *** * ************

% Function
% DETERMINES perceptron target vector
%
% Use: [target] = detTargVect(num_class)
%
% Input num_class: number of signal classes
%
% Returns target: vector of unique binary class representations
%
% Example: num_class = 6;
% [target] = detTargVect(num_class)
% class =[123456]
% target = [000111;
% 0 110 0 1;
% 10 10 10]
%

171

% 15 January 2000
% Miguel G. San Pedro
!^* ************************** H*4UH»»»H»**tH«*(«»»*tH»*lH**H*H»*H*»*«»«**),***».i,

class = [l:num_class] ,-
[target] = flipud(de2bi(class)');

return

3. Common Mean Separator Programs

a. simmsnn.m
function simmsnn(f,method,classData,num_features,w,b,tp,fig)

% Function

% SIMULATES the mean separator neural network with performance parameter defined by
% function f
%

% Use: simmsnn(f»method,classData,num_features,w,b,tp,fig)
%

% Input f: mean separator neural network function method
% method: mean separator variation number
% 1 - standard
% 2 - preconditionied input (Mod 1)
% 5 - normalized projection (Mod 2)
% 8 - with VMR termination (Mod 3)
% classData: training data
% w: projection weight vector
% b: projection bias
% tp: training parameters -(see function trms_sp)
% fig: figure number
%
% Returns (none)
%
% 6 March 2000
% Miguel G. San Pedro
%**i,iti:tf,i,i,t,****************i,*****
global gloUsrReq

[classRow,num_data] = size(classData);
num_class = classRow/num_features;
num_prwise = sum(l:num_class-l); % number of pairwise comparisons
ind =0; % pairwise index
r = zeros(num_prwise,num_class); % class type identifier

%***i,ti,1ri,tiri,iCi,nririri,*irirtirtirttti:t + ir

% COMPARE class k and class kk
for k = l:num_class

knum_feat = k*num_features;
for kk = k+l:num_class

kknum_feat = kk*num_features;
ind = ind + 1;

classl = classData(knum_feat-num_features+l:knum_feat, :) ,-
class2 = classData(kknum_feat-num_features+l:kknum_feat,:);
pi = [classl;class2];

disp(['Class ',num2str(k),' vs Class ',num2str(kk)])
fig = fig+1;
[wNN(:,ind),bNN(ind)] = feval(f,w,b,pi,tp,method,fig);

% DETERMINE class type identifier for this pairwise comparison
for mm = l:num_class

mmnum_feat = mm*num_features;

172

classA = classData(iramum_feat-num_features+l:mrnnum_feat,
r(ind,mm) = 20*mean(logsig(wNN(:,ind)'*classA + bNN(ind)!

% DETERMINE projection data for neuron maps
plotr = [plotr 20*logsig(wNN(:,ind)'*classA + bNN(ind))-

-10;

10];

end

% PLOT neuron maps
figure
plot(plotr)
xlabelCTest Point')
ylabeK ['Neuron Map [' ,num2str (k) , ', ' ,num2str(kk) ,']'])

end
end

% DISPLAY weights/bias and class type identifiers
if (gloUsrReq == 'N')

userReq = input!'Display projection weights and biases (Y/N):
if (userReq == 'Y')

dispWeightBias(wNN.bNN)
end
dispC ')

end

','s');

************** **
% CLASSIFY test points
load ..\test\testClass.dat
[testRow,testData] = size(testclass);
if (testRow -= num_features*(num_class+l))

disp('*** DATA ERROR')
end

% REORGANIZE test data into a matrix with dimensions
% 'num_features'x'num_class'*'num_data'
testCl = [] ;
for m = l:num_class+l

testCl = [testCl testClasst(m-1)*num_features+l:m*num_features,:)];
end
[testRow,totTestData] = size(testCl);
if ((testRow -= num_features)|(totTestData -= (num_class+l)»testData))

disp('* * * DATA ERROR')
end

% PROJECT/TYPE testclass data
% 'diff matrices store distances from class type identifiers (r's) to data projections
% (o's) determine best fit (i.e. trial data typing) by deteriming minimum value of each
% row
% 2nd dimension of r gives number of classes, testData gives number of test data points
% taking column number of each testProj point and performing ceil(colNum/testData) gives
% class number

testProj = [];
typel = zeros(num_class+l,num_class);

if (gloUsrReq == 'N')
userReq = input('Display typing distance data (Y/N): ','s');

else
userReq = 'N';

end
for m = 1:totTestData

for mm = l:num_prwise
o(mm,m) = 20*logsig(wNN(: ,mm)'*testCl(:,m)+bNN(mm))-10;

end
testProj = [testProj o(:,m)];
diff = [];

173

for mm = l:num_class
dist = o(:,m) - r(:,mm);
diff = [diff dist'*dist];

end
[y index] = min(diff,[],2);
classNumber = ceil(m/testData);
typeKclassNumber,index) = typel(classNumber,index) + 1;

,num2str(index), ',num2str(y)])

',num2str(testData)])

if (userReq == 'Y')
disp([num2str(diff) , '
if (mod(m,testData)==0)

disp('****')
end

end
end
disp (' ')

% DISPLAY test data class typing
for m = l:num_class+l

disp(['type',num2str(m),': ',num2str(typel (m, :)),
end
dispC ')

load type.dat
type = type + typel;
save type.dat type -ascii -tabs

% PLOT class type identifier and test data projections
% NOTE: 1. can only plot first three features
% 2. testProj also includes projection of non-
% class data
if (gloUsrReq == 'N')

userReq = input ('Plot projections (Y/N) : ','s'),-
if (userReq == 'Y')

fig = f ig+1 ,-
plotProjectionttestProj(1:3,:),r(1:3,:),testData,method,fig)

end
dispC ')

end

% DISPLAY class type identifier and test data projections
% NOTE: testProj also includes projection of non-class data
if (gloUsrReq == 'N')

userReq = input('Display projection data (Y/N): ','s');
if (userReq == 'Y')

dispProjection(testProj,r,testData,method)
end
disp(' ')

end

return

b. logsig.m
function a = logsig(n,b)

% where to put: c:\matlab\work\test
%LOGSIG Log sigmoid transfer function.
%
% LOGSIG(N)
% N - SxQ Matrix of net input (column) vectors.
% Returns the values of N squashed between 0 and 1.

% EXAMPLE: n = -10:0.1:10;
a = logsig(n);

174

%

plot(n,a)

LOGSIG(Z,B) ...Used when Batching.
Z - SxQ Matrix of weighted input (column) vectors.
B - Sxl Bias (column) vector.

Returns the squashed net input values found by adding
B to each column of Z.

LOGSIG('delta') returns name of delta function.
LOGSIG!'init') returns name of initialization function.
LOGSIG('name') returns full name of this transfer function.
LOGSIG('output') returns output range of this function.

See also NNTRANS, BACKPROP, NWTAN, LOGSIG.

% Mark Beale, 1-31-92
% Revised 12-15-93, MB
% Copyright (c) 1992-94 by The MathWorks, Inc.
% $Revision: 1.1 $ $Date: 1994/01/11 16:25:39 $

if nargin < 1, error('Note enough arguments.'); end

if isstr(n)
if strcmp(lower(n),'delta')

a = 'deltalog';
elseif strcmp(lower(n),'init')

a = 'nwlog';
elseif strcmp(lower(n),'name')

a = 'Log Sigmoid';
elseif strcmp(lower(n),'output')

a = [0 1];.
else

error('Unrecognized property.')
end

else
if nargin==2

[nr,nc] = size(n),-
n = n + b*ones(l,nc);

end
a = 1 ./ (l+exp(-n));

end

c. sigderiv.m
function d=sigderiv(n)

a***
% This function calculated the derivative of logsig function
% where to put: c:\matlab\work\test
%***

d=exp(-n)./((l+exp(-n))."2);
i = find(~finite(d));
d(i) = 0;

4. Standard Mean Separator

a. trmsjsp.m
function [wl,bl] = trms_sp(wl,bl,p,tp,method,fig)

ft**

% Function
% TRAINS the mean separator neural network with performance parameter defined as
% MD = -[E{20*logsig(w'*x+b)-10} - E{20*logsig(w'*y+b)-10}]"2
% to determine weight and bias for optimal projection

175

Use: [wl,bl] = trms_sp(wl,bl,p,tp,fig)

Input wl:
bl:
P =
tp:
method:

fig:

initial weight vector (3x1)
initial bias (lxl)
matrix of training data for two classes
training parameters (see below)
mean separator variation number
1 - standard
2 - preconditioned input (Mod 1)
5 - normalized projection (Mod 2)
8 - with VMR termination (Mod 3)
figure number

optimized weight vector
optimized bias

Returns wl:
bl:

26 February 2000
Miguel G. San Pedro

MEAN SEPARATOR training function
GENERAL EQUATION

MD(w,b) = -[mean(20*logsig{w'*x+b)-10) - mean(20*logsig{w'*y+b}-10)]"2
= -[20*mean(logsig{w'*x+b})-10 - 20*mean(logsig{w'*y+b}) + 10]~2
= -400[mean(logsig{w'*x+b})- mean(logsig{w'*y+b})]~2
= -400[mean(logsig{w'*x+b} - logsig{w'*y+b})]~2

DETERMINE gradient by
dMD/dw = c*dl
with c = -800[mean(logsig{w'*x+b) - logsig{w'*y+b))]

dl = mean(der_logsig{w'*x+b}*x-der_logsig{w'*y+b}*y,2)

dMD/db = c*d2
with d2 = mean(der_logsig{w'*x+b}-der_logsig{w'*y+b})

Training parameters(tp)
tp(l)
tp(2)
tp(3)
tp(4)
tp(5)
tp(6)
tp(7)

epochs between updating display
maximum number of epochs to train
initial lerning rate
learning rate increase
learning rate decrease
momentum constant
maximum error ratio

ttimittitJitmHtHHmjtiiiijJMjjHHHHHiiHMtHHHmiJijjmHijHii ******

global gloUsrReq
global gloUsrPlot

% TRAINING PARAMETERS
df = tp(l);
me = tp(2)
lr = tp(3)
im = tp(4)
dm = tp(5)
mc = tp(6)
er = tp(7)

dwl = 0;
dbl = 0;
MC = 0;
[pRow,pCol] = size(p);

nx = zeros(pRow/2,pCol);
ny = nx,-
nx(l:pRow/2, :) = p (1 :pRow/2, :) ;
ny(l:pRow/2, :) = p(l+pRow/2:pROW, :) ;

176

logsig_x = logsig(wl'*nx+bl);
logsig_y = logsig(wl'*ny+bl);

a = -400* (mean(logsig_x - logsig_y,2))"2;

% CHECK how weights and bias are changing
%1oad ..\checkWB.dat

% TRAINING
if (gloUsrReq == 'N')

userReq = input('Display PROJ_INDEX update message (Y/N): ','s');

else
userReq = 'N';

end
if (userReq == 'Y')

message = sprintf('TRAINMSNN: %%g/%g epochs, PROJ_INDEX = %%g.\n',me);
fprintf(message,0,a)
dispd'lr = ' ,num2str(lr)])

end

ctr_repeat = 0;
go_on = 1;
ii = 1;
a_save = 0;
plot_a_save = 0;
plot_lr_save = 0;
wl_save = rand(pRow/2,1);
bl_save = rand (1) ,-
while(go_on==l)

% LEARNING PHASE
[dwl,dbl] = lrms_sp(wl,bl,p,dwl,dbl,lr,MC) ;

% stepsize (alpha in steepest descent algorithm) incorporated as last step in lrms_sp
new_wl = wl-dwl,-
new_bl = bl-dbl;
new_a = -400*(mean(logsig(new_wl'*nx+new_bl) - logsig(new_wl'*ny+new_bD,2))~2;
MC = mc;

% PRESENTATION PHASE
if (new_a > a/er)

lr = lr*dm;
MC = 0;

else
if (new_a < a)

lr = lr*im;
end
wl = new_wl;
bl = new_bl;
a = new_a;

end
% checkWB =[checkWB; [a wl' bl]];

% TRAINING RECORD
% PLOTTING
plot_a(ii) = a;
plot_lr(ii) = lr;

% DISPLAY performance parameter
if (userReq == 'Y')

if (rem(ii,df) == 0)
fprintf(message,ii,a)
disp(['lr= ',num2str(lr)])

end
end

% if lr falls below minimum allowable (no learning being accomplished), break out of loop

177

% if final MD > -360, reset loop counter, choose new initial weights and bias and repeat
% loop

if ((lr < le-4)|(ii == me))
if (abs(a_save) < abs(a))

a_save = a;
wl_save = wl;
bl_save = bl;
plot_a_save = plot_a;
plot_lr_save = plot_lr;

end
if ((a_save > -360)&(ctr_repeat <= 10))

ii = 0;
plot_a = [] ;
plot_lr = [];
wl = randn(pRow/2,1);
bl = randn(l,l);

a = -400*(mean(logsig(wl'*nx+bl) - logsig(wl' *ny+bl) ,2)) "2-,

dwl = 0;
dbl = 0;
MC = 0;
lr = tp(3);
ctr_repeat = ctr_repeat+l;

% checkWB = [checkWB; 0001 zeros(size(wl')) NaN];
if (userReq == 'Y')

dispC*** INSUFFICIENT PROJECTION INDEX ***')
dispC ')

end
else

go_on = 0;
end

end
ii = ii+1;

end

disp(['num epochs =',num2str(ii-1)])
disp(['lr = ' ,num2str(lr)])
disp(['MD = ',num2str(a_save)])

wl = wl_save;
bl = bl_save,-
disp(' ')

if (gloUsrPlot == 'Y')
figure(fig)
orient tall
subplot(211)
plot(plot_a_save)
xlabel('time')
ylabeK'MD')
title(['MDvs time (Method',num2str(method),')'])
grid on

subplot(212)
plot(plot_lr_save)
xlabel('time')
ylabel('lr')
titlet['learning rate vs time (Method',num2str(method),')'])
grid on

end

%checkWB = [checkWB; 0001 ones(sizetwl')) NaN] ;
%save ..\checkWB.dat checkWB -ascii -tabs

return

178

% Input
%

w:
b:

%
%

P =
dwl:

% dbl:
% lr:
% ItlC:

 b. lrms_sp.m
function [dw,db] = lrms_sp(w,b,p,dwl,dbl,lr,mc)

%**
% Function
% Learning rate function for the mean separator neural network with performance
% parameter defined as
% MD = -[E{20*logsig(w'*x+b)-10} - E{20*logsig(w'*y+b)-10}]~2
% to determine change in weight and bias for optimal projection
%
% Use: [dw,db] = lrms_sp(w/b,p,dwl,dbl,lr,mc)
%

weight vector (3x1)
bias (1x1)
matrix of training data for two classes
current change in weight
current change in bias
learning rate
momentum constant

%
% Returns dw: weight vector change (3x1)
% db: bias change (lxl)
%
% 16 January 2000
% Miguel G. San Pedro
a**

[pRow,pCol] = size(p);
nx = zeros(pRow/2,pCol);
ny = nx;
nx(l:pRow/2,:) = p(l:pRow/2,:);
ny(l:pRow/2,:) = p(pRow/2+l:pRow,:);

logsig_x = logsiglw'*nx+b) ,-
logsig_y = logsigtw'*ny+b);
der_logsig_x = sigderiv(w'*nx+b);
der_logsig_y = sigderiv(w'*ny+b);

dll = [];
dll = der_logsig_x([ones(l,pRow/2)],:);
dl2 = [];
dl2 = der_logsig_y([ones(l,pRow/2)],:);
dl = mean(dll.*nx - dl2.*ny,2);

c = -800*(mean(logsig_x,2) - mean(logsig_y,2));
dw = c*dl;
db = c*mean(der_logsig_x - der_logsig_y,2);

% APPLY adaptive lr and stepsize
dw = mc*dwl + (1-mc)*lr*dw;
db = mc*dbl + (1-mc)*lr*db;

return

meansep_spl

function a = meansep_spl(pl,p2,w,b)

% Function
% CALCULATES the mean separator neural network with performance parameter defined as
% MD(w,b) = -[mean(20*logsig{w'*x+b}-10) - mean{20*logsig(w'*y+b)-10}]~2
%
% Use: a = meansep_spl(pl,p2,w,b)
%

179

% Input pi: row feature vector for first class
% P2: row feature vector for second class
% w: weight vector
% b: bias
%

% Returns a: mean separator performance parameter value

% 5 January 2000
% Miguel G. San Pedro
V»»«.«.«H*...n.H»»,ll»tl,»1„„HH,H,(rir„»H„„M)r,1,HttHHM1HtHjMH

if nargin < 3, error('Not enough arguments.'); end

alpha = logsig(w'*pl + b) ;
beta = logsig(w'*p2 + b);
a = -400*(mean(alpha - beta,2))A2;

return

5. Preconditioned Input Data (MSNN Mod 1): simmsnnjC.m
function simmsnn_C(classData_norm,num_features,w,b,tp,fig)

% Function

% SIMULATES the mean separator neural network with performance parameter defined as
% MD = -[E{20*logsig(w'*[(x-mean(x))/sd(x)+mean(x)]+b)-10}
% - E{20*logsig(w'*[(y-mean(y))/sd(y)+mean(y)]+b)-10}]"2
%
% Use: siinmsrm_C (classData_nom,nuin_f eatures ,w,b,tp, fig)
%
% Calls trms_sp and lrms_sp since equations are same; only input vectors differ
%
% Input classData_norm: normalized training data
% w: projection weight vector
% b= projection bias
% CP= training parameters (see function trms_sp2)
* fig: figure number
%
% Returns (none)
%
% 23 February 2000
% Miguel G. San Pedro

global gloUsrReq

method = 2;

[classRow,num_data] = size(classData_norm) ,-
num_class = classRow/num_features;
numjprwise = sum(l:num_class-l); % number of pairwise comparisons
ind - 0; % pairwise index
r = zeros(num_prwise,num_class); % class type identifier

i*...H,.»H,«„,»„„„„)„1H»„1,„H,H,HtH,HM4HMiiHtHH(HHJri4Ht4iiHMi

% COMPARE class k and class kk
for k = l:num_class

knum_feat = k*num_features;
for kk = k+l:num_class

kknum_feat = kk*num_f eatures ,-
ind = ind + 1;

classl = classData_norm(knum_feat-num_features+l:knum_feat,:);
class2 = classData_norm(kknum_feat-num_features+l:kknum_feat, :) ,-
pi = [classl,-class2] ;

180

disp(['Class ',num2str(k),' vs Class ',num2str(kk)])
fig = fig+1;
[wNN(:,ind),bNN(ind)] = trms_sp(w,b,pi,tp,method, fig) ;

% DETERMINE class type identifier for this pairwise comparison
for mm = l:num_class

mmnum_feat = mm*num_features;
classA = classData_norm(mmnum_feat-num_features+l:mmnum_feat, :) ,-
r(ind,mm) = 20*mean(logsig(wNN(:,ind)'*classA + bNN(ind)))-10;

% DETERMINE projection data for neuron maps
plotr = [plotr 20*logsig(wNN(:,ind)'»classA + bNN(ind))-10];

end

% PLOT neuron maps
figure
plot(plotr)
xlabeK'Test Point')
ylabel(['Neuron Map [',num2str(k),',',num2str(kk) ,']'])

end
end

% DISPLAY weights/bias and class type identifiers
if (gloUsrReq == 'N')

userReq = input('Display projection weights and biases (Y/N): ','s');
if (userReq == 'Y')

dispWeightBias(wNN,bNM)
end
disp (' ')

end

%**
% CLASSIFY test points
load ..\test\testClass_norm.dat
[testRow, testData] = size (testClass_norm) ,-

numTestData = testData/(num_class+l);
if (testRow -= num_features*num_class)

dispC*** DATA ERROR')
end

% PROJECT/TYPE testClass data
% 'diff matrices store distances from class type identifiers (r's) to data projections
% (o's) determine best fit (i.e. trial data typing) by deteriming minimum value of each
% row
% 2nd dimension of r gives number of classes, testData gives number of test data points
% taking column number of each testProj point and performing ceil(colNum/testData) gives
% class number

typel = zeros(num_class+l,num_class) ,-

if (gloUsrReq == 'N')
userReq = input('Display typing distance data (Y/N): ','s');

else
userReq = 'N' ,-

end

diffMat = [];
for k = l:num_class

knum_feat = k*num_features;
xk = [knum_feat - num_features + l:knum_feat];
diffRow = [];
for kk = 1:testData

for mm = l:num_prwise
o(mm,kk) = 20*logsig(wNN(:,mm)'*testClass_norm(xk,kk))-10;

181

end
dist = o(:,kk) - r(:,k) ;
diffRow = [diffRow dist'*dist] ,-

end
diffMat = [diffMat;diffRow];

end
[y index] = min(diffMat,[],1);

for k = l:num_class+l
for kk = l:numTestData

xx = (k-l)*numTestData+kk;
typeKk, index (xx)) = typel (k, index (xx))+l,-

end
end
disp(' ')

% DISPLAY test data class typing
for m = l:num_class+l

disp(['type',num2str(m),': ',num2str(typel(m, :))])
end

load type.dat
type = type + typel;
save type.dat type -ascii -tabs

% PLOT class type identifier and test data projections - option not permitted

% PLOT class type identifier and test data projections - option not permitted

return

6. Normalized Projection Space (MSNN Mod 2)

a. trmsjspS.m
function [wl,bl] = trms_sp5(wl,bl,p,tp,method,fig)

% Function
% TRAINS the mean separator neural network with performance parameter defined as
% MD = -[E{alpha - beta}]~2*[E{(alpha - E{alpha})"2)
% + E{(beta - E{beta})~2} + delta]~-l
% with alpha = logsig(w'*x+b), beta = logsig(w'*y+b), and delta precludes division by
% zero, to determine weight and bias for optimal projection
% NORMALIZES basic performance parameter (standard MSNN) by sum of projection
% variances
%
% Use: [wl,bl] = trms_sp5(wl,bl,p,tp,method,fig)
%
% Input wl: initial weight vector (3x1)
% bl: initial bias (lxl)
% P= matrix of training data for two classes
% tp: training parameters (see below)
% method: mean separator variation number
% 1 - standard
% 2 - preconditioned input (Mod 1)
% 5 - normalized projection (Mod 2)
% 8 - with VMR termination (Mod 3)
% fig: figure number
%
% Returns wl: optimized weight vector
% bl: optimized bias
%
% 26 February 2000

182

San Pedro

Miguel G.
*********!

MEAN SEPARATOR
GENERAL EQUATION

**
training function

MD(w,b) = -[E{20*logsig(w'*x+b)-10} -
*[var(20*logsig(W x+b)-10

= -[E{20*logsig(w'*x+b)-10} -
*[E{(20*logsig(w'*x+b)-10 -

+ E{(20*logsig(w'*y+b)-10
= -[20*E{logsig(w'*x+b)}-10 -

*[E{(20*logsig(w'*x+b)-10 -
+ E{(20*logsig(w'*y+b)-10

= -[E{logsig(w'*x+b)}
*[E{(logsig(w'*x+b)

E{20*logsig(W *y+b)-10}]"2
+.var(20*logsig(w'y+b)-10) + delta]A-l

E{20*logsig(w'*y+b)-10}]'2
E{20*logsig(w'*x+b)-10})"2
- E{20*logsig(w'*y+b)-10})Ä2 + delta]A-l
20*E{logsig(W *y+b)+10}]"2
20*E{logsig(w'*x+b)}+10)A2
- 20*E{logsig(w'*y+b)}+10)A2 + delta]A-l

E{logsig(w'*y+b)}]A2
E{logsig(W *x+b)})"2}

let alpha

or, alpha
note: if

+ E{ (logsig(w'*y+b) - E{logsig(W*y+b)})"2} + delta]A-l
= logsig(w'*x+b), beta = logsig(w'*y+b)

■[E{alpha} - E{beta}]"2*[E{(alpha - E{alpha})A2} + [E{(beta - E{beta})"2}
+ delta]"1

-[E{alpha - beta}]*2*[E{alpha~2 + beta"2}
- EA2{alpha} - EA2{beta} + delta]"-1

= -[E{alpha - beta}]A2/[var(alpha) + var(beta) + delta]
den is infinitesimally small, delta = le-10

% DETERMINE gradient by
K = E{alpha - beta}/(E{alphaA2 + betaA2} - EA2{alpha} - EA2{beta} + delta)
dMD/dw = 2K[K*(E{alpha*dalpha/dw + beta*dbeta/dw}

- E{alpha}E{dalpha/dw} - E{beta}E{dbeta/dw})
- E{dalpha/dw - dbeta/dw}]

dMD/db = 2K[K*(E{alpha*dalpha/db + beta*dbeta/db}
- E{alpha}E{dalpha/db} - E{beta}E{dbeta/db})
- E{dalpha/db - dbeta/db}]

%
%
%
%
%
%
%
%
% Training parameters(tp)

epochs between updating display
maximum number of epochs to train
initial lerning rate
learning rate increase
learning rate decrease
momentum constant
maximum error ratio

<^* ***
global gloUsrReq
global gloUsrPlot

format short e
delta = le-10;

% tp(l)
% tp(2)
% tp(3)
% tp(4)
% tp(5)
% tp(6)
% tp(7)
%

% TRAINING PARAMETERS
df = tp(l)
me = tp(2)
lr = tp(3)
im = tp(4)
dm = tp(5)
mc = tp(6)
er = tp(7)

dwl = 0;
dbl = 0;
MC = 0;
[pRow,pCol = size(p) ;

nx = zeros(pRow/2,pCol);
ny = nx;
nx(l:pRow/2,:) = p(l:pRow/2,:);
ny(l:pRow/2,:) = p(l+pRow/2:pRow,

183

alpha = logsig (wl' *nx+bl) ,-
beta = logsig(wl' *ny+bl) ,-

E_alpha = mean(alpha,2);
E_beta = mean(beta,2);
var_alpha = var (alpha, 1) ,-
var_beta = var(beta,1);

num = (E_alpha - E_beta)A2;
den = var_alpha + var_beta;
if (den < le-10)

den = delta;
end
a = -num/den;

% CHECK how mean and variance are updating
%checkMD = [] ;
%checkMD = [checkMD; [num den]];

% CHECK how weights and bias are changing
%load ..\checkWB.dat

% TRAINING
if (gloUsrReq == 'N')

userReq = input('Display PROJ_INDEX update message (Y/N): ','s');
else

userReq = 'N';
end
if (userReq == 'Y')

message = sprintf('TRAINMSNN: %%g/%g epochs, PROJ_INDEX = %%g.\n',me);
fprintf(message,0,a)
disp(['lr= ',num2str(lr)])

end

ctr_repeat = 0;
go_on = 1,-
ii = 1;
a_save = 0;
plot_a_save = [];
plot_lr_save = [];
wl_save = rand(pRow/2,1) ,-
bl_save = rand(1);
GOODcheck = 0;

while(go_on==l)
% LEARNING PHASE
[dwl,dbl] = lrms_sp5(wl,bl,p,dwl,dbl,lr,MC);

% stepsize (alpha in steepest descent algorithm) incorporated as
% last step in lrms_sp5
new_wl = wl-dwl;
new_bl = bl-dbl;

new_alpha = logsig(new_wl'*nx+new_bl);
new_beta = logsig(new_wl'*ny+new_bl);

E_new_alpha = mean(new_alpha,2);
E_new_beta = mean(new_beta,2);
var_new_alpha = var(new_alpha, 1);
var_new_beta = var(new_beta,1);

new_num = (E_new_alpha - E_new_beta)~2;
new_den = var_new_alpha + var_new_beta;
if (new_den < le-10)

new_den = delta;
end
new_a = -new_num/new_den;

184

MC = mc;

% PRESENTATION PHASE
if (new_a > a/er)

lr
MC

eise
if

lr*dm;
0;

[a wl' bl]];
[num den]];

(new_a < a)
lr = lr*im;

end
wl = new_wl;
bl = new_bl;
a = new_a;
nuin = new_num;
den = new_den;

end
% checkWB =[checkWB;
% checkMD = [checkMD;

% TRAINING RECORD
% PLOTTING
plot_a(ii) = a;
plot_lr(ii) = lr;

% DISPLAY performance parameter
if (userReq == 'Y')

if (rem(ii,df) == 0)
fprintf(message,ii,a)
disp(['lr = ',num2str(lr)])

end
end

% CHECK improvement in performance parameter
if (abs(a_save) < abs(a))

a_save = a;
wl_save = wl;
bl_save = bl;
plot_a_save = plot_a;
plot_lr_save = plot_lr;
lr = lr/0.9; % prevents stalling training trajectory

% CALCULATE termination parameter
% Termination parameter: considered with ratio of difference in Q(+-0.005) pts
% and difference of means
% Assume Gaussian distribution
% 1.65 gives 5.0% in tails
% 1.95 gives 2.5% in tails
% 2.52 gives 0.5% in tails
GOOD_alpha = logsig(wl_save'*nx+bl_save);
GOOD_beta = logsig(wl_save'*ny+bl_save);

E_GOOD_alpha = mean(GOOD_alpha,2);
E_GOOD_beta = mean(G00D_beta,2);
var_GOOD_alpha = var(GOOD_alpha,1);
var_GOOD_beta = var(GOOD_beta,l);

GOODcheck 2.52*(sqrt(var_GO0D_alpha) + sqrt(var_GOOD_beta))...
/abs(E_GO0D_alpha - E_GOOD_beta);

end

if ({lr < le-4)|(ii
go_on = 0;

end
ii = ii+1;

me)|(GOODcheck > 0.90))

% INCREMENT epoch counter
end
disp(['num epochs =',num2str(ii-1)])

185

disp(['lr = ',num2str(lr)])
disp(['MD = ',num2str(a_save)])
disp(['VMR= ',num2str(G00Dcheck)])

wl = wl_save;
bl = bl_save;
disp (' ')

if (gloUsrPlot == 'Y')
figure(fig)
orient tall
subplot(211)
plot(plot_a_save)
xlabel('time')
ylabel('MD')
titlet['MD vs time (Method',num2str(method),')'])
grid on

subplot(212)
plot(plot_lr_save)
xlabel('time')
ylabel('lr')
title(['learning rate vs time (Method',num2str(method),')'])
grid on

end

%checkWB = [checkWB; 0005 ones(size(wl')) NaN];
%save ..\checkWB.dat checkWB -ascii -tabs

%save checkMD.dat checkMD -ascii -tabs

return

b. Irms_sp5.m
function [dw,db] = lrms_sp5(w,b,p,dwl,dbl,lr,mc)

% Function
% Learning rate function for the mean separator neural network with performance
% parameter defined as
% MD = -[E{alpha - beta}]"2*[E{(alpha - E{alpha})"2} + E{(beta - E{beta})"2}
% + delta]Ä-l
% with alpha = logsigtw1*x+b), beta = logsigtw'*y+b), and delta precludes division by
% zero
% note: if den is infinitesimally small, delta = le-10
% Determines change in weight and bias for optimal projection
%
% Use: [dw,db] = lrms_sp5(w,b,p,dwl,dbl,lr,mc)
%
% Input w: weight vector (3x1)
% b: bias (lxl)
% P= matrix of training data for two classes
% dwl: current change in weight
% dbl: current change in bias
% lr: learning rate
% mc: momentum constant
%
% Returns dw: weight vector change (3x1)
% db: bias change (lxl)
%
% 16 January 2000
% Miguel G. San Pedro

delta = le-10;

186

[pRow,pCol] = size(p);
nx = zeros(pRow/2,pCol);
ny = nx;
nx(l:pRow/2,:) = p(1:pRow/2,:);
ny(l:pRow/2,:) = p(l+pRow/2:pRow,:);

alpha = logsig(w'*nx+b);
E_alpha = mean(alpha,2);
beta = logsig(w'*ny+b);
E_beta = mean (beta, 2) ;

dalpha_db = sigderiv (W *nx+b),-
E_dalpha_db = mean(dalpha_db, 2),-
dbeta_db = sigderiv(w'*ny+b);
E_dbeta_db = mean(dbeta_db,2);

dx = [],-
dx = dalpha_db([ones(l,pRow/2)],:);
dy = [];
dy = dbeta_db([ones (l,pRow/2)],:),-

dalpha_dw = dx.*nx,-
E_dalpha_dw = mean(dalpha_dw,2);
dbeta_dw = dy.*ny;
E_dbeta_dw = mean(dbeta_dw,2) ;

alpha_mat = [];
alpha_mat = alpha([ones(1,pRow/2)] , :) ;
beta_mat = [] ;
beta_mat = beta([ones(l,pRow/2)],:);
den = var(alpha,1) + var(beta,1);
if (den < le-10)

den = delta;
end
K = mean(alpha-beta,2)/den;
dw = 2*K*(K*(mean(alpha_mat.*dalpha_dw+beta_mat.*dbeta_dw,2)...

- E_alpha*E_dalpha_dw - E_beta*E_dbeta_dw) - E_dalpha_dw + E_dbeta_dw);
db = 2*K*(K*(mean(alpha.*dalpha_db+beta.*dbeta_db, 2)...

- E_alpha*E_dalpha_db - E_beta*E_dbeta_db) - E_dalpha_db + E_dbeta_db);

% APPLY adaptive lr and stepsize
dw = mc*dw + (1-mc) *lr*dw;.
db = mc*db + (1-mc)*lr*db;

return

meansep_sp5.m
function a = meansep_sp5(pl,p2,w,b)

% **
% Function
% CALCULATES the mean separator neural network with performance parameter defined as
% MD = -[E{alpha - beta}]~2*[E{(alpha - E{alpha})"2}
% + EUbeta - E{beta})A2} + delta] Ä-l
% with alpha = logsigtw'*x+b), beta = logsigtw'*y+b), and delta precludes division by
% zero
% note: if den is infinitesimally small, delta = le-10
% NORMALIZES basic performance parameter (Methodl) by sum of projection variances
%
% Use:
%
% Input
%
%
%

meansep_sp5(pl,p2,w,b)

pi:
p2:
w:
b:

matrix of features for first class
matrix of features for second class
weight vector
bias

187

%
% Returns a: mean separator performance parameter value
%
% 5 January 2000
% Miguel G. San Pedro
%**

if nargin < 3, error('Not enough arguments.'); end

delta = le-10;

alpha = logsig(w'*pl + b) ;
beta = logsig(w'*p2 + b) ;
num = (mean(alpha - beta,2))A2;
den = var(alpha) + var(beta);

if (den < le-10)
den = delta;

end

a = -num/den;

return

7. Standard MSNN with VMR Termination (MSNN Mod 3)

a. trms_sp8.m
function [wl,bl] = trms_sp5(wl,bl,p,tp,method,fig)

% Function
% TRAINS the mean separator neural network with performance parameter defined as
% MD = -[E{20*logsig(w'*x+b)-10} - E{20*logsig(w'*y+b)-10}]"2
% to determine weight and bias for optimal projection
%
% Use: [wl,bl] = trms_sp8(wl,bl,p,tp,method,fig)
%

initial weight vector (3x1)
initial bias (lxl)
matrix of training data for two classes
training parameters (see below)
mean separator variation number
1 - standard
2 - preconditioned input (Mod 1)
5 - normalized projection (Mod 2)
8 - with VMR termination (Mod 3)
figure number

optimized weight vector
optimized bias

%
% 26 February 2000
% Miguel G. San Pedro
%**,******»*,,.„,**
% MEAN SEPARATOR training function
% GENERAL EQUATION
% MD(w,b) = -[mean(20*logsig{w'*x+b}-10) - mean{20*logsig(w'*y+b)-10}]"2
% = -[20*mean(logsig{w'*x+b})-10 - 20*mean(logsig{w'*y+b}) + 10]"2
% = -400[mean(logsig{W*x+b})- mean(logsig{w'*y+b})]"2
% = -400[mean(logsig{w'*x+b} - logsig{w'*y+b})]A2
%
% DETERMINE gradient by
% dMD/dw = c*dl
% with c = -800[mean(logsig{W*x+b} - logsig{w'*y+b})]
% dl = mean(der_logsig{w'*x+b}*x-der_logsig{w'*y+b}*y,2)

188

% Input wl:
•% bl:
% P:
% tp:
% method
%
%
%
%
% fig:
%
% Returns Wl:
% bl:

% tp(l)
% tp(2)
% tp(3)
% tp(4)
% tp(5)
% tp(6)
% tp(7)
%

%
% dMD/db = c*d2
% with d2 = mean(der_logsig{w'*x+b}-der_logsig{w'*y+b})
%
% Training parameters(tp)

epochs between updating display
maximum number of epochs to train
initial lerning rate
learning rate increase
learning rate decrease
momentum constant
maximum error ratio

%**

global gloUsrReq
global gloUsrPlot

format short e
delta = le-10;

% TRAINING PARAMETERS
df = tp(l);
me = tp(2)
lr = tp(3)
im = tp(4)
dm = tp(5)
mc = tp(6)
er = tp(7)

dwl = 0;
dbl = 0;
MC = 0;
[pRow,pCol] = size(p);

nx = zeros(pRow/2,pCol);
ny = nx;
nx(l:pR0W/2, :) = p (1 :pRow/2, :) ;
ny(l:pRow/2,:) = p(l+pRow/2:pRow,:);

alpha = logsig(wl'*nx+bl);
beta = logsig(wl'*ny+bl);

E_alpha = mean(alpha,2);
E_beta = mean(beta,2);

a = -(E_alpha - E_beta)"2;

% CHECK how weights and bias are changing
%load ..\checkWB.dat

% TRAINING
if (gloUsrReq == 'N')

userReq = input('Display PROJ_INDEX update message (Y/N): ','s');
else

userReq = 'N';
end
if (userReq == 'Y')

message = sprintf('TRAINMSNN: %%g/%g epochs, PROJ_INDEX = %%g.\n',me);
fprintf(message,0,a)
disp(['lr= ',num2str(lr)])

end

ctr_repeat = 0;
go_on = 1;
ii = 1;
a_save = 0;
plot_a_save = [];

189

plot_lr_save = [] ;
wl_save = rand(pRow/2,l) ,-
bl_save = rand (1) ,-
GOODcheck = 0;

whi1e(go_on==1)
% LEARNING PHASE
[dwl,dbl] = lrms_sp8(wl,bl,p,dwl,dbl,lr,MC);

% stepsize (alpha in steepest descent algorithm) incorporated as
% last step in lrms_sp8
new_wl = wl-dwl;
new_bl = bl-dbl;

new_alpha = logsig(new_wl'*nx+new_bl) ;
new_beta = logsig(new_wl'*ny+new_bl);

E_new_alpha = mean(new_alpha,2);
E_new_beta = mean(new_beta,2);

new_num = (E_new_alpha - E_new_beta)A2;
new_a = -new_num;

MC = mc;

% PRESENTATION PHASE
if (new_a > a/er)

lr = lr*dm;
MC = 0;

else
if (new_a < a)

lr = lr* int-
end
wl = new_wl;
bl = new_bl;
a = new_a;

end
% checkWB =[checkWB; [a wl' bl]],-
% checkMD = [checkMD; [num den]];

% TRAINING RECORD
% PLOTTING
plot_a(ii) = a;
plot_lr(ii) = lr;

% DISPLAY performance parameter
if (userReq == 'Y')

if (rem(ii,df) == 0)
fprintf(message,ii,a)
disp(['lr = ',num2str(lr)])

end
end

% CHECK improvement in performance parameter
if (abs(a_save) < abs(a))

a_save = a;
wl_save = wl;
bl_save = bl;
plot_a_save = plot_a;
plot_lr_save = plot_lr;
lr = lr/0.9; % prevents stalling training trajectory

% CALCULATE termination parameter
% Termination paramter: considered with ratio of difference in Q(+-0.005) pts
% and difference of means
% Assume Gaussian distribution
% 1.65 gives 5.0% in tails

190

% 1.95 gives 2.5% in tails
% 2.52 gives 0.5% in tails
GOOD_alpha = logsig(wl_save'*nx+bl_save);
GOODjbeta = logsig(wl_save'*ny+bl_save);

E_GOOD_alpha = mean(GOOD_alpha,2);
E_GOOD_beta = mean(GOOD_beta,2);
var_GOOD_alpha = var(GOOD_alpha,l);
var_GOOD_beta = var(GOOD_beta,1);

GOODcheck = 1 - 2.52*(sqrt(var_GOOD_alpha) + sqrt(var_GOOD_beta))
/abs(E_GOOD_alpha - E_GOOD_beta);

end

if ((lr < le-4)|(ii == me)|(GOODcheck > 0.90))
go_on = 0;

end
ii = ii+l; % INCREMENT epoch counter

end
disp(['num epochs =',num2str(ii-l)])
disp(['lr= ',num2str(lr)])
disp(['MD = ',num2str(a_save)])
dispU'VMR = ',num2str(GOODcheck)])

wl = wl_save;
bl = bl_save;
disp (' ')

if (gloUsrPlot == 'Y')
figure(fig)
orient tall
subplot(211)
plot(plot_a_save)
xlabel('time')
ylabel('MD')
titlet['MD vs time (Method',num2str(method),')'])
grid on

subplot(212)
plot(plot_lr_save)
xlabel('time')
ylabel('lr')
title(['learning rate vs time (Method',num2str(method),')'])
grid on

end

%checkWB = [checkWB; 0005 ones(size(wl')) NaN];
%save ..\checkWB.dat checkWB -ascii -tabs

%save checkMD.dat checkMD -ascii -tabs

return

lrms_sp8.m
function [dw,db] = lrms_sp8(w,b,p,dwl,dbl,lr,mc)

%**

% Function
% Learning rate function for the mean separator neural network with performance
% parameter defined as
% MD = -[E{20*logsig(w**x+b)-10> - E{20*logsig(w'*y+b)-10}]"2
% to determine change in weight and bias for optimal projection
%
% Use: [dw,db] = lrms_sp8(w,b,p,dwl,dbl,lr,mc)
%
% Input w: weight vector (3x1)

191

% b:
% P =
% dwl:
% dbl:
% lr:
% mc:
%
% Returns dw:
% db:

bias (lxl)
matrix of training data for two classes
current change in weight
current change in bias
learning rate
momentum constant

weight vector change (3x1)
bias change (lxl)

% 26 February 2000
% Miguel G. San Pedro
%*** ** *******

[pRow,pCol] = size(p);
nx = zeros(pRow/2,pCol);
ny = nx;
nx(l:pRow/2,:) = p(l:pRow/2,:) ;
ny(l:pRow/2,:) = p(pRow/2+l:pRow,:);

logsig_x = logsig(w'*nx+b);
logsig_y = logsigfw'*ny+b);
der_logsig_x = sigderivfw'*nx+b),-
der_logsig_y = sigderiv(w'*ny+b);

dll = [],-
dll = der_logsig_x([ones (l,pRow/2)),:),-
dl2 = [];
dl2 = der_logsig_y([ones(l,pRow/2)] , :) ;
dl = mean(dll.*nx - dl2.*ny,2);

c = -800*(mean(logsig_x,2) - mean(logsig_y,2)
dw = c*dl;
db = c*mean(der_logsig_x - der_logsig_y,2);

% APPLY adaptive lr and stepsize
dw = mc*dwl + (1-mc)*lr*dw;
db = mc*dbl + (1-mc)*lr*db;

return

192

LIST OF REFERENCES

Brunzell, EL, "Extractions of Features for Classification of Impulse Radar
Measurements," SPIE Proceedings, Automatic Object Recognition VII, 3069, April 1997,
pp. 321-330.

Brunzell, H. and Eriksson, J., "Feature Reduction for Classification of Multidimensional
Data," draft, Dept of Electrical Engineering, The Ohio State University, 2 November
1999.

Dayhoff, Judith, Neural Network Architecture: An Introduction, New York, NY: Van
Nostrand Reinhold, 1990.

Duzenli, Ozhan, Classification of Underwater Signals Using Wavelet-Based
Decompositions, Master's Thesis, Naval Postgraduate School, Monterey, CA, June 1998.

Duzenli, Ozhan and Fargues, Monique P., "Wavelet-Based Feature Extraction Methods
for Classification Applications," Proceedings of 9th Signal Processing Workshop on
Statistical Signals and Array Processing, September 1998.

Fargues, Monique P. and Ozhan Duzenli, "Dimension Reduction Issues in Classification
Applications," Proceedings of 32nd Asilomar Conference on Signals, Systems, and
Computers, November 1998.

Fausett, Loren, Fundamentals of Neural Networks: Architecture, Algorithms, and
Application, Upper Saddle River, NJ: Prentice-Hall, Inc., 1994.

Fukunaga, Keinosuke, Introduction to Statistical Pattern Recognition, San Diego, CA:
Academic Press, 1990.

Ghani, Nasir and Lamontagne, Rene, "Neural Networks Applied to the Classification of
Spectral Features for Automatic Modulation Recognition," Proceedings of the 1993
Military Communication Conference, 1,1993, pp. 111-115.

Hagan, Martin T., Demuth, Howard B., and Beale, Mark, Neural Network Design,
Boston, MA: PWS Publishing, Co., 1996.

Haykin, Simon, Neural Networks: A Comprehensive Foundation, Englewood Cliffs, NJ:
MacMillan Publishing Co., 1994.

Huo, Xiaoming and Donohuo, David, "A Simple and Robust Modulation Classification
Method via Counting," Proceedings of the 1998 IEEE International Conference on
Acoustics, Speech and Signal Processing, 6, 1998, pp. 3289-3292.

193

Johnson, ADM Jay L., "A Maritime Strategy for the Naval Century," as quoted in
Campus News, Naval Postgraduate School, Monterey, CA, 7:7, February 17, 2000, p. 4.

Lallo, Pauli, "Signal Classification by Discrete Fourier Transform," Proceedings of the
1999 Military Communications International Symposium, MTT.COM 1999.

MATLAB 5, ver 5.3.1, The MathWorks, Inc., Natick, MA, September 28,1999.

Moravec, Hans, "When Will Computer Hardware Match the Human Brain?" Journal of
Transhumanism, 1,1998, http://www.transhumanist.com/volumel/moravec.htm (active
as of 8 April 1999).

Raudys, Sarunas, "Linear Classifiers in Perceptron Design," Proceedings of the 13th

International Conference on Pattern Recognition, 3,1996, pp. 763-767.

Reichert, Juergen, "Automatic Classification of Communication Signals using Higher
Order Statistics," Proceedings of the 1992 IEEE International Conference on Acoustics,
Speech, and Signal Processing, 5,1992, pp. 221-224.

SAS Institute, Inc., "%MULTNORM macro: Mardia Tests of Multivariate Normality,"
2000, http://ftp.sas.com/techsup/download/stat/multnorm.sas (active as of 27 February
2000).

Sills, J.A., "Maximum-Likelihood Modulation Classification for PSK/QAM,"
Proceedings of the 1999 Military Communications International Symposium, MJLCOM
1999.

194

INITIAL DISTRIBUTION LIST

Defense Technical Information Center.
8725 John J. Kingman Rd., Ste 0944
Ft. Belvoir, VA 22060-6218

Dudley Knox Library
Naval Postgraduate School
411 Dyer Rd.
Monterey, CA 93943-5101

Chairman, Code EC
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5121

Engineering and Technology Curricular Office, Code 34
Naval Postgraduate School
Monterey, CA 93943-5107

Prof. Monique P. Fargues, Code EC/Fa
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5121

Prof. Ralph D. Hippenstiel, Code EC/Hi
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5121

Mr. William Glenney
Deputy Director
CNO Strategic Studies Group
686 Cushing Road
Newport, RI02841-1207

LCDR Miguel G. San Pedro, U.S. Navy.
11916-8 Tivoli Park Row
San Diego, CA 92128

195

